Math, asked by krishna617459, 8 months ago

Some Import
1. Find the zeroes of the quadratic polynomial
p(x) = 9x2 - 4
2. Find the quadratic polynomial whose zeroes are
1 and -3
Evergreen Sell-Study in Mathematics​

Answers

Answered by Anonymous
19

Solution 1:

\bf{\red{\underline{\bf{Given\::}}}}

The quadratic polynomial p(x) = 9x² - 4.

\bf{\red{\underline{\bf{To\:find\::}}}}

The zeroes.

\bf{\red{\underline{\bf{Explanation\::}}}}

We have p(x) = 9x² - 4

Zero of the polynomial p(x) = 0

So;

\longrightarrow\sf{9x^{2} -4=0}\\\\\longrightarrow\sf{(3x)^{2} -(2)^{2} =0}\\\\\longrightarrow\sf{(3x+2)(3x-2)=0\:\:\:[\therefore\:using\:a^{2} -b^{2} ]}\\\\\longrightarrow\sf{3x+2=0\:\:\:Or\:\:\:3x-2=0}\\\\\longrightarrow\sf{3x=-2\:\:\:Or\:\:\:3x=2}\\\\\longrightarrow\sf{\orange{x=\dfrac{-2}{3} \:\:\:Or\:\:\:x=\dfrac{2}{3} }}

∴ The α = -2/3 and β = 2/3 are the zeroes of the polynomial.  

Solution 2:

\bf{\red{\underline{\bf{Given\::}}}}

We have α = 1 and β = -3.

\bf{\red{\underline{\bf{To\:find\::}}}}

The quadratic polynomial.

\bf{\red{\underline{\bf{Explanation\::}}}}

\star\:{\green{\underline{\boldsymbol{Sum\:of\:the\:zeroes\::}}}}}

\longrightarrow\sf{\alpha +\beta =\dfrac{-b}{a} }\\\\\\\longrightarrow\sf{\alpha +\beta= 1+(-3)}\\\\\\\longrightarrow\sf{\alpha +\beta =1-3}\\\\\\\longrightarrow\sf{\pink{\alpha +\beta =-2}}

\star\:{\green{\underline{\boldsymbol{Product\:of\:the\:zeroes\::}}}}}

\longrightarrow\sf{\alpha \beta =\dfrac{c}{a} }\\\\\\\longrightarrow\sf{\alpha \beta =1\times -3}\\\\\\\longrightarrow\sf{\pink{\alpha \beta =-3}}

Now;

\boxed{\bf{The\:required\:quadratic\:polynomial\::}}}}

\longrightarrow\sf{x^{2} -(sum\:of\:the\:zeroes)+(product\:of\:the\:zeroes)}\\\\\longrightarrow\sf{x^{2} -(-2)x+(-3)=0}\\\\\longrightarrow\sf{\pink{x^{2} +2x-3=0}}

Answered by Saby123
23

Correct Question -

Part 1 -

Find the zeroes of the quadratic polynomial p(x) = 9x2 - 4 .

Part 2 -

Find the quadratic polynomial whose zeroes are 1 and -3 .

Solution -

Part 1 -

 \sf{ \: Find  \: the \:  zeroes  \: of  \: the  \: quadratic  \: polynomial  } \:  \\  \\  \sf{p(x) = 9x2 - 4 .} \:  \\  \\  \sf{ \:  =  >  \: p(x) = 0 \:  } \\  \\  \sf{ \: 9 {x}^{2}   - 4 = 0} \:  \\  \\  \sf{ \:  =  >9 {x}^{2}  = 4 } \\  \\  \sf{ \:  =  > {x}^{2}  =  \dfrac{4}{9} \:  } \\  \\  \sf{ \: x =   \sqrt{ \dfrac{4}{9}} } \:  \\  \\  \sf{ x =  \dfrac{2}{3} \: and - \dfrac{2}{3}  } \:  \ \\  \\  \sf{so \: the \: require d \: zeroes \: are \:  \dfrac{2}{3} \: and - \dfrac{2}{3} \: } ....... [A]

Part 2 -

  \sf{ Find \:  the  \: quadratic  \: polynomial  \: whose  \: zeroes  \: are  \: 1 \:  and \:  -3 .   } \:  \\  \\   \sf{ \: Hence \:  \alpha  \: and \:  \beta  \: are \: 1 \: and \:  - 3 \: respectively. \: }  \ \\  \\  \sf{ }\:    \\ \sf{ Sum \: Of \: Zeroes \: - } \\ \\ \sf{ => \alpha + \beta = 1 - 3 = -2 } \\ \\ \sf{ Product \: Of \: Zeroes \: - } \\ \\ \sf{ => \alpha \beta = 1 \times -3 = -3 } \\ \\ \sf{We \: know \: that  \:  \: quadratic \: polynomial \: can\: be \: written \: as \:   : } \:  \\  \\  \sf{ \:  =  >  \: p(x)  = {x}^2 - px + q  } \\  \\  \sf{ Where \: -} \:  \\  \\  \sf{ p = Sum \: Of \: Zeroes  } \\  \\  \sf{ q = Product Of Zeroes } \\  \\  \sf{ Substituting \: the \: required \: values \: - } \:  \\  \\  \sf{ p(x) =  {x}^2 + 2x -3  } ....... [A]

Similar questions