Math, asked by faujdargaurvi456, 7 months ago

some intelligent person tells the answer pls. - q. a/(x-b)+b/(x-a)=2​

Answers

Answered by pulakmath007
11

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO SOLVE

 \displaystyle \:  \frac{a}{x - b}  +  \frac{b}{x - a}  = 2

EVALUATION

 \displaystyle \:  \frac{a}{x - b}  +  \frac{b}{x - a}  = 2

 \implies \:  \displaystyle \:  \frac{a}{x - b}  - 1 +  \frac{b}{x - a}  - 1 = 0

  \implies \: \displaystyle \:  \frac{a - x  +  b}{x - b}  +  \frac{b - x  + a}{x - a}  = 0

  \implies \: \displaystyle \: (a + b - x) \bigg [\frac{1}{x - b}  +  \frac{1}{x - a}  \bigg]  \:  = 0

So

 \displaystyle \:Either \:  (a + b - x) = 0 \:  \: or \:  \bigg [\frac{1}{x - b}  +  \frac{1}{x - a}  \bigg]  \:  = 0

Now

 \displaystyle \: \:  (a + b - x) = 0   \: \: gives \:  \: x = a + b

Again

 \displaystyle \bigg [\frac{1}{x - b}  +  \frac{1}{x - a}  \bigg]  \:  = 0 \: gives \:

\displaystyle \frac{1}{x - b}   =  -   \frac{1}{x - a}

 \implies \: x - a =  - x + b

 \implies \: 2x =  a + b

 \displaystyle \: x =  \frac{a + b}{2}

RESULT

SO the required solution is

   \displaystyle \: \sf{\boxed { \:x = (a + b) \: ,  \:  \frac{ a + b}{2}   \: }}

Similar questions