Math, asked by Anonymous, 5 months ago

Some of the
of father and his son is
ages
60
years after 14 years father's age will
be Three fines the age of the son. Plud There
present ages​

Answers

Answered by TrueRider
148

Correct Question -

The sum of ages of father and his son is 60 years. After 14 years father's age will be three times the age of the son. Find their present ages.

Given -

Sum of their ages = 60 yrs.

After 14 years, father's age will be thrice the age of his son.

To find -

Their present ages.

Solution -

Here, in the question, we need to find the ages of the father and the son, therefore, from the given, information only, we will solve this question.

Let,

Father's age be x

son's age be 60 - x

Ages after 14 yrs -

father's age = (x + 14)

son's age = (60 -x + 14)

Now,

According to the question, we will fist add 60 with 14, and then we will countinue our question.

x + 14 = 3 (74 - x)

x + 14 = 222 - 3x

Now, we will write the like terms together from the equation.

x + 3x = 222 - 14

4x = 208

x = \sf\cancel{\dfrac{208}{4}}

x = 52 yrs

son = 60 - 52 = 8 yrs

\therefore The age of father is 52 yrs and age of son is 8 yrs.

__________________________________________________

Answered by BarbieBablu
231

\huge \sf \underline \red{ ⇢ Correct \:  Question : }

The sum of the age of the father and son is 60.after 14 years , the fathers age will be three times the age of the son. what is the present age of the father.

______________________________________

⇢ \huge \sf \underline \blue{Answer : }

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \underline \purple{Father \: age \:  = x = 52}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \underline \purple{son \: age \:  = 60 - 52 = 8years}

⇢ \huge \sf \underline \pink{To \:  find : }

present age

⇢\huge \sf \underline \orange{ solution}

⇢ \sf{let \: the \: take \: father \: age \: be \: x}

 ⇢\sf{son \: age \: be \: 60 - x}

 \star \:  \sf \underline{After \: 14 \: years}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{father \: age  = (x + 14)years}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{son \: age  = (60 - x + 14)}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ = (74 - x)years}

 \star \:  \sf \underline{According \: to \: the \: given \: problem}

  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{↝ x + 14 = 3(74 - x)}

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{↝x + 14 = 222 - 3x}

 \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{↝ x + 3x = 222 - 14}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{↝4x - 208}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{↝x =  \dfrac{208}{4} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \blue{ x = 52}

so,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline \red{Father \: age \:  = x = 52}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline \red{son \: age \:  = 60 - 52}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline \red{ = 8years}

Similar questions