Math, asked by Anonymous, 7 months ago

Somebody please explain this question without any copy paste or Spam ! ​

Attachments:

Answers

Answered by unknowngenius00
1

Step-by-step explanation:

1+sin^2 \theta = 3sin\theta cos\ \theta \text{ then } tan\ \theta = \frac{1}{2}\ or\ 11+sin

2

θ=3sinθcos θ then tan θ=

2

1

or 1

Solution:

Given that, we have to prove:

1+sin^2 \theta = 3sin\theta cos\ \theta1+sin

2

θ=3sinθcos θ

To prove:

tan\ \theta = \frac{1}{2}\ or\ 1tan θ=

2

1

or 1

From given,

1+sin^2 \theta = 3sin\theta cos\ \theta1+sin

2

θ=3sinθcos θ

Divide\ by\ cos^2 \theta\ on\ both\ sidesDivide by cos

2

θ on both sides

\begin{gathered}\frac{1}{cos^2 \theta} + \frac{sin^2 \theta}{cos^2 \theta} = \frac{3sin\theta cos\theta}{cos^2 \theta}\\\\\frac{1}{cos^2 \theta} + \frac{sin^2 \theta}{cos^2 \theta} = \frac{3sin\theta}{cos\ \theta}\end{gathered}

cos

2

θ

1

+

cos

2

θ

sin

2

θ

=

cos

2

θ

3sinθcosθ

cos

2

θ

1

+

cos

2

θ

sin

2

θ

=

cos θ

3sinθ

We know that,

\frac{1}{cos \theta} = sec\ \theta \text{ and } \frac{sin \theta}{cos \theta} = tan \theta

cosθ

1

=sec θ and

cosθ

sinθ

=tanθ

Therefore,

\begin{gathered}sec^2 \theta + tan^2 \theta = 3tan \theta\\\\We\ know\ that\\\\1 + tan^2 \theta = sec^2 \theta\\\\Therefore\\\\1 + tan^2 \theta + tan^2 \theta = 3 tan\theta\\\\1 + 2tan^2 \theta - 3tan \theta = 0\\\\2tan^2 \theta - 3tan \theta + 1 = 0\\\\Split\ the\ middle\ term\\\\2tan^2 \theta -2tan \theta - tan\ \theta + 1 = 0\\\\\end{gathered}

sec

2

θ+tan

2

θ=3tanθ

We know that

1+tan

2

θ=sec

2

θ

Therefore

1+tan

2

θ+tan

2

θ=3tanθ

1+2tan

2

θ−3tanθ=0

2tan

2

θ−3tanθ+1=0

Split the middle term

2tan

2

θ−2tanθ−tan θ+1=0

\begin{gathered}2tan \theta (tan \theta - 1) -(tan \theta - 1) = 0\\\\(2 tan \theta - 1)(tan \theta - 1) = 0\\\\Equate\ to\ 0\\\\2 tan \theta - 1 = 0\\\\2tan \theta = 1\\\\\boxed{tan\ \theta = \frac{1}{2}}\\\\Also,\\\\tan \theta - 1 = 0\\\\\boxed{tan \theta =1}\end{gathered}

2tanθ(tanθ−1)−(tanθ−1)=0

(2tanθ−1)(tanθ−1)=0

Equate to 0

2tanθ−1=0

2tanθ=1

tan θ=

2

1

Also,

tanθ−1=0

tanθ=1

Thus proved

Learn more about this topic

2 sin squared theta minus 5 sin theta + 2 is greater than zero theta belong to 0 to 360

https://brainly.in/question/5733577

Is sin squared theta equal to sin theta whole square

https://brainly.in/question/11707522

Similar questions