Somebody say answer for this.
This is 9th grade TRIGONOMETRY lesson.
Definitely i will make u as brainliest.
Attachments:
Answers
Answered by
2
Step-by-step explanation:
Given :-
Sin θ = a/√(a^2+b^2)
To show:-
b sin θ = a cos θ
Solution:-
Method -1:-
See the attachment
Method-2:-
Given that
Sin θ = a /√(a^2+b^2)
On squaring both sides then
=>Sin^2 θ = (a/√(a^2+b^2)^2
=>Sin^2 θ = a^2/(a^2+b^2)
=>1 - Sin^2 θ = 1-[a^2/(a^2+b^2)]
=>1-Sin^2 θ =[ (a^2+b^2)-a^2]/(a^2+b^2)
=>1 - Sin^2 θ = [a^2+b^2-a^2)/(a^2+b^2)
=>1-Sin^2 θ = b^2/(a^2+b^2)
We know that
Sin^2θ + Cos^2 θ =1
=>Cos^2 θ = b^2/(a^2+b^2)
=>Cos θ = √[b^2/(a^2+b^2)]
=>Cos θ = b/√(a^2+b^2)
Now
Cos θ/ Sin θ
=>[b/√(a^2+b^2)]/[a/√(a^2+b^2)]
=>[b/√(a^2+b^2)]×[√(a^2+b^2)/a]
On cancelling √(a^2+b^2) then
=>b/a
=>Cos θ/ Sin θ = b/a
=>a Cos θ = b Sin θ
Therefore , b Sin θ = a Cos θ
Hence, Proved
Used formula:-
- Sin^2θ + Cos^2 θ = 1
Attachments:
Similar questions