Math, asked by hashmiareeba12, 1 month ago

someone please ans it correctly​

Attachments:

Answers

Answered by sadafsagufta591
0

Answer:

if i know then i will surely say you

but i don't know anything

Step-by-step explanation:

mark brainliest

Answered by GraceS
5

\sf\huge\bold{Answer:}

\fbox{option (C) is correct statement}

Given :

△ABC

 AD, BE and CF are medians .

To find :

Relation between sides of triangle and medians.

Solution :

In △ABC

 AD, BE and CF are medians to sides BC, AC and AB respectively.

So,

\sf⇒BD=DC=½BC

\sf⇒AE=EC=½AC

\sf⇒AF=FB=½AB

In △ABC

 AD, BE and CF are medians to sides BC, AC and AB respectively.

So,

\sf⇒BD=DC=½BC

\sf⇒AE=EC=½AC

\sf⇒AF=FB=½AB

By Pythagoras theorem in △AFC

:⟶AC²=CF²+AF²

:⟶AC²=CF²+(½AB)²

:⟶AC²=CF²+¼AB²

:⟶4AC²=4CF²+AB²... (I) \\

By Pythagoras theorem in △BCE

:⟶BC²=BE²+EC²

:⟶BC²=BE²+(½AC)²

:⟶BC²=BE²+¼AC²

:⟶4BC²=4BE²+AC²... (II) \\

By Pythagoras theorem in △ADB

:⟶AB²=AD²+BD²

:⟶AB²=AD²+(½BC)²

:⟶AB²=AD²+½BC² \\

:⟶4AB²=4AD²+BC² ... (III) \\

Adding (I),(II) and (III), we get

\sf:⟶4AC²+4BC²+4AB²=4AD²+BC²+4BE²+AC²+4CF²+AB² \\

\sf:⟶3AC²+3BC²+3AB²=4AD²+4BE²+4CF² \\

\sf:⟶3(AC²+BC²+AB²)=4(AD²+BE²+CF²) \\

\sf\huge\purple{3(AB²+BC²+AC²)=4(AD²+BE²+CF²)}

Attachments:
Similar questions