Math, asked by nishigandhi8407, 1 month ago

someone please answer this​

Attachments:

Answers

Answered by santhamahi64
1

Answer:

I think the answer is - 72 root 5

Step-by-step explanation:

once check the solution which is provided in the picture pinned to this answer.

Hope this helps you

Attachments:
Answered by rimpagangulirg4983
1

Answer:

Given,

 x =  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }

By Rationalisation of denominator,

we get,

 \frac{2 +  \sqrt{5} }{2   -   \sqrt{5} }  \times  \frac{2  +  \sqrt{5} }{2  +   \sqrt{5} }

 =  \frac{( {2})^{2}  +2 \times  2 \times  \sqrt{5}  + ( \sqrt{5} )^{2}}{(2) {}^{2}  -  (\sqrt{5}) {}^{2}  }

 =  \frac{4 + 2 \sqrt{5} + 5 }{4 - 5}

 =  \frac{9 + 2 \sqrt{5} }{ - 1}

 =  - 9  - 2 \sqrt{5}

Now,

y =  \frac{2  -   \sqrt{5} }{2  +   \sqrt{5} }

 \frac{2  -   \sqrt{5} }{2    +    \sqrt{5} }  \times  \frac{2   -   \sqrt{5} }{2   -    \sqrt{5} }

=  \frac{( {2})^{2}   - 2 \times  2 \times  \sqrt{5}   +  ( \sqrt{5} )^{2}}{(2) {}^{2}  -  (\sqrt{5}) {}^{2}  }

=  \frac{4  -  2 \sqrt{5} + 5 }{4 - 5}

 =  \frac{9  -  2 \sqrt{5} }{ - 1}

  =  - 9 + 2 \sqrt{5}

now \\ x {}^{2}  - y {}^{2}

 = ( - 9 - 2 \sqrt{5} ) {}^{2}  - ( - 9  + 2 \sqrt{5} ) {}^{2}

 = (81 + 4 \times 5) - (81 + 4 \times 5)

 = 81 - 81 - 20 - 20 \\  = 0

THEREFORE,

x {}^{2}  - y {}^{2}  = 0

Similar questions