Math, asked by sarthaksharmaff, 9 months ago

someone please answer this question​

Attachments:

Answers

Answered by DEBOBROTABHATTACHARY
0

equation answer is 1

Step-by-step explanation:

 \sqrt[lm]{ \frac{ {x}^{l} }{ {x}^{m} } }  \times  \sqrt[mn]{ \frac{ {x}^{m} }{ {x}^{n} } }  \times  \sqrt[nl]{ \frac{ {x}^{n} }{ {x}^{l} } }

 =  {( \frac{ {x}^{l} }{ {x}^{m}  } )}^{ \frac{1}{lm} }  \times {( \frac{ {x}^{m} }{ {x}^{n}  } )}^{ \frac{1}{mn} }  \times {( \frac{ {x}^{n} }{ {x}^{l}  } )}^{ \frac{1}{nl} }

 = {({ {x}^{l - m} } )}^{ \frac{1}{lm} }  \times {({ {x}^{m - n} } )}^{ \frac{1}{mn} }  \times {({ {x}^{n - l} } )}^{ \frac{1}{nl} }

 = {({ {x} } )}^{ \frac{(l - m)}{lm} }  \times{({ {x} } )}^{ \frac{( m - n)}{mn} }   \times {({ {x} } )}^{ \frac{(n - l)}{nl} }

 = {({ {x} } )}^{ \frac{(l - m)}{lm}  +\frac{(m - n)}{mn}  + \frac{(n - l)}{nl}}

  = {x}^{\frac{(ln - mn  + lm - nl + nm  -lm )}{mnl}}

 =  {x}^{0}

 = 1

Similar questions