Math, asked by tanyabajpai70, 7 months ago

Someone please help me solving this.​

Attachments:

Answers

Answered by Anonymous
3

Question

 \rm \to \dfrac{ \cos x }{1 -  \tan x }  -  \dfrac{ \sin {}^{2} x }{ \cos x -  \sin x  }  =  \cos x  +  \sin x

Solution:-

\rm \to \dfrac{ \cos x }{1 -  \tan x}  -  \dfrac{ \sin {}^{2}  x }{ \cos x -  \sin x  }  =  \cos x  +  \sin x

We have to prove

 \rm \cos x   + \sin x

Take LHS

\rm \to \dfrac{ \cos x }{1 -  \tan x }  -  \dfrac{ \sin {}^{2} x }{ \cos x -  \sin x}

Use this trigonometry identities

 \rm \:  \implies \tan x  =  \dfrac{ \sin x}{ \cos x}

We get

\rm \to \dfrac{ \cos x }{1 -   \dfrac{ \sin x}{ \cos x}  }  -  \dfrac{ \sin {}^{2} x }{ \cos x-  \sin x }

take lcm

\rm \to \dfrac{ \cos x }{ \dfrac{ \cos x  -  \sin x}{ \cos x }  }  -  \dfrac{ \sin {}^{2} x}{ \cos  x-  \sin x }

\rm \to \dfrac{ \cos {}^{2} x }{ \cos x -  \sin x }  -  \dfrac{ \sin {}^{2} x }{ \cos x -  \sin x  }

Take lcm

  \rm\dfrac{ \cos {}^{2} x -  \sin {}^{2} x }{ \cos x -  \sin x }

use this identity;

 \rm( {a}^{2}  -  {b}^{2} ) = ( a + b)(a - b)

we get

  \rm\dfrac{( \cos {}^{}  x -  \sin {}^{}  x ) ( \cos x  +  \sin x )}{ \cos x  -  \sin x}

Now

 \rm \:  \cos x  -  \sin x \:  \: is \: cancel \: out

we get

 \rm \cos x +  \sin x

LHS = RHS , Hence proved

Similar questions