Math, asked by shouryaluthra3006, 3 months ago


Someone pls help me.

Attachments:

Answers

Answered by anindyaadhikari13
2

Solution:

Given,

 \tt \mapsto {3}^{x + 1}  +  {3}^{x - 1}  = 90

We have to find out x.

\tt \mapsto {3}^{x} \times  {3}^{1}   +  {3}^{x} \times  {3}^{ -1}   = 90

\tt \mapsto {3}^{x} \times ( {3}^{1}   + {3}^{ -1} )  = 90

\tt \mapsto {3}^{x} \times  \bigg( {3}  +  \dfrac{1}{3} \bigg)  = 90

\tt \mapsto {3}^{x} \times  \dfrac{10}{3} = 90

\tt \mapsto {3}^{x}  =  90 \times  \dfrac{3}{10}

\tt \mapsto {3}^{x}  =27

\tt \mapsto {3}^{x} =  {3}^{3}

Comparing base, we get,

\tt \mapsto x =  {3}

∆ So, the value of x is 3.

Answer:

  • x = 3

Verification:

Put x = 3 in the left hand side. We get,

 \tt =  {3}^{4} +  {3}^{2}

 \tt =81 + 9

 \tt =90

= RHS (Hence Verified)

Answered by AbhinavRocks10
2

\large{\underline{\underline{\mathtt{\bf{\:QUESTION:-}}}}}

\tt {3}^{x - 1} + {3}^{x + 1} = 90\: find \: x^3

_________________________

\large{\underline{\underline{\mathtt{\bf{\:ANSWER:-}}}}}

First , We know ,

\sf if \:{a}^{m}\:=\:{a}^{n}

, So , m = n . because if base is same so, power will be equal .

Now,

\sf\leadsto\:{3}^{x - 1} + {3}^{x + 1} = 90⇝3

\sf\leadsto\:{3}^{x}\times\:{3}^{-1}\:+\:{3}^{x}\times\:{3}^{1}\:=\:90-3

\sf\leadsto\:{3}^{x}({3}^{-1}\:+\:3\:=\:90

\sf\leadsto\:{3}^{x}(\frac{1}{3}\:+\:3)\:=\:90

\sf\leadsto\:{3}^{x}(\frac{(1+9)}{3}\:=\:90

\sf\leadsto\:{3}^{x}(\frac{10}{3}\:=\:90

\sf\leadsto\:{3}^{x}\:=\:90\times\:\frac{3}{10}

\sf\leadsto\:{3}^{x}\:=\:27

\sf\leadsto\:{3}^{x}\:=\:{3}^{3}

  • Compare both side , here, base is same , so power will be equal each other ,

\pmb{\boxed{\boxed{\:(x)\:=\:3}}}

_________________________

Similar questions