Math, asked by kamakshikardam0, 10 months ago

Someone plz solve this question​

Attachments:

Answers

Answered by tahseen619
2

√5

Step-by-step explanation:

This is a like fraction. We don't need to rationalize , Just simplify .

Note

Like Fraction : When the denominator of two fraction are same but different in sign .

Solution:

 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -   \sqrt{5}  }  \\  \\  \frac{(7 + 3 \sqrt{5} )(3 -  \sqrt{5} ) - (7 - 3 \sqrt{5} )(3 +  \sqrt{5}) }{(3 +  \sqrt{5})(3 -  \sqrt{5} ) }  \\  \\  \frac{(21 - 7 \sqrt{5}  + 9 \sqrt{5}  - 3.5) - (21 + 7 \sqrt{5}  - 9 \sqrt{5}  - 3.5)}{(3 +  \sqrt{5})( 3 -  \sqrt{5}  )}  \\  \\  \frac{(21  + 2 \sqrt{5} - 15)  - (21 -2  \sqrt{5}  - 15)}{ {3}^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  \frac{21 - 15 + 2 \sqrt{5} - 21 + 15  + 2 \sqrt{5}  }{9 - 5}  \\  \\  \frac{4 \sqrt{5} }{4}  \\  \\  \sqrt{5}  \:

Hence the required answer is √5 .

Similar questions