someone solve this trigonometry question
prove the above it being given that a and b are complementary angles
Answers
Answer:
Given: A and B are complementary angles
(sin A +cosB)2=1+2sinAsinB
To Find : A & B
Solution:
A and B are complementary angles
=> A + B = 90°
=> A = 90° -B
=> SinA = Sin(90° - B)
=> SinA = CosB
A = 90° - B
=> COSA = Cos(90° - B)
SinA = COSA
=> SinA = SinB
=> A = B
Hence True iff A = B
and A + B = 90°
=> A = B = 45°
if A & B are complementary then below can be proved:
(sinA +cosA)2=1+2 sinAsinB or (sin A +SinB)2=1+2 sinAsinB
(sinA +COSA)2=1+2 sinAsinB
LHS = 1+ 2SinACosA = 1 + 2SinASinB = RHS
(sinA +SinB)?=1+2sinAsinB
LHS = Sin?A + Sinb +2SinASinB = Sin?A +
Cos A + 2SinASinB = 1 + 2sinAsinB = RHS
=> CosA = SinB
(sin A +cosB)2=1+2sinAsinB
=> (sinA +sinA)?=1+2sinACosA
=> (2SinA)? = ( Sina + Cosa + 2sinACosA)
=> (2SinA)2 = ( SinA + CosA)?
=> 2 SinA = SinA + CosA
=> SinA = CosA
sorry pata nahi yeh correct h ya nahi .