Math, asked by sos61, 4 months ago

soove it fast ............ ​

Attachments:

Answers

Answered by BrainlyEmpire
66

GIVEN :–

• A quadratic equation ax²+bx+c = 0 (a ≠0) .

• One root is 3 times of other root.

TO FIND :–

• Value of 16ac = ?

SOLUTION :–

• Let the root of quadratic equation = α

• Other root of quadratic equation = 3α

▪︎ We know that –

  \\\implies\bf Sum \:  \: of \:  \: roots  =  -  \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  \alpha  + 3 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf  4 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf \alpha =  -  \dfrac{b}{4a}  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

▪︎ We also know that –

  \\\implies\bf Product \:  \: of \:  \: roots  =  \dfrac{Constant \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  (\alpha )(3 \alpha )=  \dfrac{c}{a}  \\

  \\\implies\bf 3{\alpha}^{2}  =  \dfrac{c}{a}  \\

  \\\implies\bf {\alpha}^{2}  =   \dfrac{c}{3a}\\

• Using eq.(1) –

  \\\implies\bf { \bigg(-\dfrac{b}{4a} \bigg)}^{2}  =   \dfrac{c}{3a}\\

  \\\implies\bf \dfrac{ {b}^{2} }{16 {a}^{2} } =   \dfrac{c}{3a}\\

  \\\implies\bf3a{b}^{2} = 16 {a}^{2}c \\

  \\\implies\bf3{b}^{2} = 16ac \\

• Hence –

  \\\implies \large { \boxed{\bf16ac = 3{b}^{2}}}\\

Answered by Anonymous
140

Answer:

SOLUTION :–

• Let the root of quadratic equation = α

• Other root of quadratic equation = 3α

▪︎ We know that –

  \\\implies\bf Sum \:  \: of \:  \: roots  =  -  \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  \alpha  + 3 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf  4 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf \alpha =  -  \dfrac{b}{4a}  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

▪︎ We also know that –

  \\\implies\bf Product \:  \: of \:  \: roots  =  \dfrac{Constant \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  (\alpha )(3 \alpha )=  \dfrac{c}{a}  \\

  \\\implies\bf 3{\alpha}^{2}  =  \dfrac{c}{a}  \\

  \\\implies\bf {\alpha}^{2}  =   \dfrac{c}{3a}\\

• Using eq.(1) –

  \\\implies\bf { \bigg(-\dfrac{b}{4a} \bigg)}^{2}  =   \dfrac{c}{3a}\\

  \\\implies\bf \dfrac{ {b}^{2} }{16 {a}^{2} } =   \dfrac{c}{3a}\\

  \\\implies\bf3a{b}^{2} = 16 {a}^{2}c \\

  \\\implies\bf3{b}^{2} = 16ac \\

• Hence –

  \\\implies \large { \boxed{\bf16ac = 3{b}^{2}}}\\

Answered by Anonymous
132

Answer:

SOLUTION :–

• Let the root of quadratic equation = α

• Other root of quadratic equation = 3α

▪︎ We know that –

  \\\implies\bf Sum \:  \: of \:  \: roots  =  -  \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  \alpha  + 3 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf  4 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf \alpha =  -  \dfrac{b}{4a}  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

▪︎ We also know that –

  \\\implies\bf Product \:  \: of \:  \: roots  =  \dfrac{Constant \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  (\alpha )(3 \alpha )=  \dfrac{c}{a}  \\

  \\\implies\bf 3{\alpha}^{2}  =  \dfrac{c}{a}  \\

  \\\implies\bf {\alpha}^{2}  =   \dfrac{c}{3a}\\

• Using eq.(1) –

  \\\implies\bf { \bigg(-\dfrac{b}{4a} \bigg)}^{2}  =   \dfrac{c}{3a}\\

  \\\implies\bf \dfrac{ {b}^{2} }{16 {a}^{2} } =   \dfrac{c}{3a}\\

  \\\implies\bf3a{b}^{2} = 16 {a}^{2}c \\

  \\\implies\bf3{b}^{2} = 16ac \\

• Hence –

  \\\implies \large { \boxed{\bf16ac = 3{b}^{2}}}\\

Answered by Anonymous
144

Answer:

SOLUTION :–

• Let the root of quadratic equation = α

• Other root of quadratic equation = 3α

▪︎ We know that –

  \\\implies\bf Sum \:  \: of \:  \: roots  =  -  \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  \alpha  + 3 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf  4 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf \alpha =  -  \dfrac{b}{4a}  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

▪︎ We also know that –

  \\\implies\bf Product \:  \: of \:  \: roots  =  \dfrac{Constant \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  (\alpha )(3 \alpha )=  \dfrac{c}{a}  \\

  \\\implies\bf 3{\alpha}^{2}  =  \dfrac{c}{a}  \\

  \\\implies\bf {\alpha}^{2}  =   \dfrac{c}{3a}\\

• Using eq.(1) –

  \\\implies\bf { \bigg(-\dfrac{b}{4a} \bigg)}^{2}  =   \dfrac{c}{3a}\\

  \\\implies\bf \dfrac{ {b}^{2} }{16 {a}^{2} } =   \dfrac{c}{3a}\\

  \\\implies\bf3a{b}^{2} = 16 {a}^{2}c \\

  \\\implies\bf3{b}^{2} = 16ac \\

• Hence –

  \\\implies \large { \boxed{\bf16ac = 3{b}^{2}}}\\

Answered by Anonymous
132

Answer:

SOLUTION :–

• Let the root of quadratic equation = α

• Other root of quadratic equation = 3α

▪︎ We know that –

  \\\implies\bf Sum \:  \: of \:  \: roots  =  -  \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  \alpha  + 3 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf  4 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf \alpha =  -  \dfrac{b}{4a}  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

▪︎ We also know that –

  \\\implies\bf Product \:  \: of \:  \: roots  =  \dfrac{Constant \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  (\alpha )(3 \alpha )=  \dfrac{c}{a}  \\

  \\\implies\bf 3{\alpha}^{2}  =  \dfrac{c}{a}  \\

  \\\implies\bf {\alpha}^{2}  =   \dfrac{c}{3a}\\

• Using eq.(1) –

  \\\implies\bf { \bigg(-\dfrac{b}{4a} \bigg)}^{2}  =   \dfrac{c}{3a}\\

  \\\implies\bf \dfrac{ {b}^{2} }{16 {a}^{2} } =   \dfrac{c}{3a}\\

  \\\implies\bf3a{b}^{2} = 16 {a}^{2}c \\

  \\\implies\bf3{b}^{2} = 16ac \\

• Hence –

  \\\implies \large { \boxed{\bf16ac = 3{b}^{2}}}\\

Answered by Anonymous
144

Answer:

SOLUTION :–

• Let the root of quadratic equation = α

• Other root of quadratic equation = 3α

▪︎ We know that –

  \\\implies\bf Sum \:  \: of \:  \: roots  =  -  \dfrac{Coefficient \:  \: of \:  \: x}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  \alpha  + 3 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf  4 \alpha =  -  \dfrac{b}{a}  \\

  \\\implies\bf \alpha =  -  \dfrac{b}{4a}  \:  \:  \:  \:  \:  \:  -  -  -  - eq.(1)\\

▪︎ We also know that –

  \\\implies\bf Product \:  \: of \:  \: roots  =  \dfrac{Constant \:  \: term}{Coefficient \:  \: of \:  \:  {x}^{2} }  \\

  \\\implies\bf  (\alpha )(3 \alpha )=  \dfrac{c}{a}  \\

  \\\implies\bf 3{\alpha}^{2}  =  \dfrac{c}{a}  \\

  \\\implies\bf {\alpha}^{2}  =   \dfrac{c}{3a}\\

• Using eq.(1) –

  \\\implies\bf { \bigg(-\dfrac{b}{4a} \bigg)}^{2}  =   \dfrac{c}{3a}\\

  \\\implies\bf \dfrac{ {b}^{2} }{16 {a}^{2} } =   \dfrac{c}{3a}\\

  \\\implies\bf3a{b}^{2} = 16 {a}^{2}c \\

  \\\implies\bf3{b}^{2} = 16ac \\

• Hence –

  \\\implies \large { \boxed{\bf16ac = 3{b}^{2}}}\\

Similar questions