Math, asked by xyz2375, 5 months ago

sorry for last time !!!
see the attachment and answer asap please​

Attachments:

Answers

Answered by kaushik05
5

To prove :

 \star \:  \:  \dfrac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  +  \dfrac{ \sin( \alpha ) }{1 +  \cos( \alpha ) }  = 2 \csc( \alpha )  \\

LHS :

 \implies \:  \dfrac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  +  \dfrac{ \sin( \alpha ) }{1 +  \cos( \alpha ) }  \\  \\  \implies \:  \frac{( {1 +  \cos( \alpha )) }^{2} +  { \sin}^{2}  \alpha  }{ \sin( \alpha )(1 +  \cos( \alpha ))  }  \\  \\  \implies \:  \frac{1 +  { \cos}^{2}  \alpha  + 2 \cos( \alpha ) +  { \sin}^{2} \alpha   }{ \sin( \alpha ) (1 +  \cos( \alpha )) }  \\  \\  \implies \:  \frac{1 + 1 + 2 \cos( \alpha ) }{ \sin( \alpha )(1 +  \cos( \alpha ))  }  \\  \\  \implies \:  \frac{2 + 2 \cos( \alpha ) }{ \sin( \alpha )(1 +  \cos( \alpha ))  }  \\  \\  \implies \:  \frac{2( \cancel{1 +  \cos( \alpha )}) }{ \sin( \alpha )  \cancel{(1 +  \cos( \alpha )) }}  \\  \\  \implies \:  \frac{2}{ \sin( \alpha ) }  \\  \\  \implies \: 2 \csc( \alpha )

LHS = RHS .

Proved .

Formula used :

 \star \:  { \sin}^{2}  \theta +  { \cos }^{2}  \theta = 1 \\  \\  \star \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  \\  \star \:  \sin \theta =  \frac{1}{ \cosec \theta}

Answered by abhilashshinde3862
0

Answer:

HENCE IT PROVED

Step-by-step explanation:

HOPE IT WILL HELP YOU

PLEASE MARK ME AS BRAINLIST .....

Attachments:
Similar questions