Physics, asked by Hacker20, 1 year ago

Sove this problem pls..................

Attachments:

Answers

Answered by Anonymous
1
Let the point where gravitational potential is zero be "x" distance from the mass "m''

AT this point ! 

 \frac{Gm}{x^2} = \frac{GM}{(d-x)^2}

 \frac{m}{x^2} =  \frac{m}{(d-x)^2}

 \frac{d-x}{x} = \sqrt{ \frac{M}{m} }

 \frac{d}{x} = 1 +  \sqrt{ \frac{M}{m} }

x =  \frac{d}{1 + \sqrt{ \frac{m}{n} } }

x =  \frac{d \sqrt{m} }{ \sqrt{m} + \sqrt{M} }

Now,

d -x =  \frac{d \sqrt{M} }{ \sqrt{m} +  \sqrt{M} }

And , 

V = -  \frac{Gm}{x} -  \frac{GM}{d-x}

V =  -\frac{Gm}{ \frac{d \sqrt{m} }{ \sqrt{m} + \sqrt{m} } } -\frac{GM}{ \frac{d \sqrt{M} }{ \sqrt{m} + \sqrt{m} } }

V = - \frac{Gm . ( \sqrt{m}+  \sqrt{M}) . \sqrt{M}  }{d \sqrt{m}  \sqrt{M} } - \frac{GM . ( \sqrt{m}+  \sqrt{M}) . \sqrt{m}  }{d \sqrt{m}  \sqrt{M} }

V =  -\frac{G}{d \sqrt{m}  \sqrt{M} } (m  ( \sqrt{m}  +\sqrt{M} )  \sqrt{M} + M( \sqrt{m}  \sqrt{M} ) \sqrt{m} )

V = -  \frac{G}{d \sqrt{m}  \sqrt{M} } (m \sqrt{mM} + \sqrt{mM} + \sqrt{mM} + M \sqrt{mM} )

V = - \frac{G \sqrt{m}  \sqrt{M} }{d \sqrt{m}  \sqrt{M} } (m + M + 2 \sqrt{m}  \sqrt{M} )

V = -  \frac{G}{d} (m + M + 2  \sqrt{mM} )

__________________________________________________________
Note In your case d = r 

m1 = m 
m2 = M 
_________________________________________________________
But the concept its same 
Similar questions