Math, asked by arorarajkumar91, 5 days ago

SPAM ANSWERS WILL BE REPORTED ​

Attachments:

Answers

Answered by Anonymous
5

 \Large{\underline{\underline{\text{Question:}}}}

\rm If   \ \dfrac{37}{13} = 2 + \dfrac{1}{x+\dfrac{1}{y+\frac{1}{z}}}, \ find \ the \ value \ of \ z.

 \Large{\underline{\underline{\text{Explanation:}}}}

Consider the given expression,

 \rm\implies \dfrac{37}{13} = 2 + \dfrac{1}{x+\dfrac{1}{y+\frac{1}{z}}}

Can be rewritten as,

 \rm\implies 2 + \dfrac{11}{13} = 2 + \dfrac{1}{x+\dfrac{1}{y+\frac{1}{z}}}

 \rm\implies 2  - 2+ \dfrac{11}{13} = \dfrac{1}{x+\dfrac{1}{y+\frac{1}{z}}}

 \rm\implies \dfrac{11}{13} = \dfrac{1}{x+\dfrac{1}{y+\frac{1}{z}}}

 \rm\implies \dfrac{1}{ \dfrac{13}{11} } = \dfrac{1}{x+\dfrac{1}{y+\frac{1}{z}}}

On cross multiplication, we get:

 \rm\implies \dfrac{13}{11} =x+\dfrac{1}{y+\frac{1}{z}}

 \rm\implies \dfrac{13}{11} - x  = \dfrac{1}{y+\frac{1}{z}}

 \rm\implies \dfrac{13 - 11x}{11}  = \dfrac{1}{y+\frac{1}{z}}

 \rm\implies \dfrac{1}{ \frac{11}{13 - 11x}}  = \dfrac{1}{y+\frac{1}{z}}

Again on cross multiplication, we get:

 \rm\implies\dfrac{11}{13 - 11x}  = y+\dfrac{1}{z}

 \rm\implies\dfrac{11}{13 - 11x} - y  = \dfrac{1}{z}

 \rm\implies\dfrac{11 - 13y + 11xy}{13 - 11x}   = \dfrac{1}{z}

 \purple { \boxed{ \rm \implies z = \dfrac{13 - 11x}{11 - 13y + 11xy} }}

Hence this is the required answer.

Similar questions