Math, asked by stoysem, 10 months ago




Spammed answer will be deleted...​

Attachments:

Answers

Answered by Anonymous
3

 \blue{\bold{\underline{\underline{Be Brainly }}}}

Attachments:
Answered by ItsTogepi
7

\huge\underline\mathfrak\color{olive}Given

\sf{\cos\theta + \sin\theta =  \sqrt{2}\sin\theta }

\huge\underline\mathfrak\color{olive}To \: prove

\sf{\cos\theta + \sin\theta =  \sqrt{2} \cos\theta}

\huge\underline\mathfrak\color{olive} Solution

\sf{\cos\theta + \sin\theta  =  \sqrt{2} \sin\theta}

\sf{Now, \: by \: squaring \: both \: sides \: we \: get .}

\sf{\implies  \cos^{2}  + \sin ^{2}  - 2\cos\theta\sin\theta = 2 {sin}^{2}\theta }

\sf{\implies {cos}^{2}   = 2 {sin}^{2} \theta -  {sin}^{2}   + 2\cos\theta\sin\theta}(By \: transposition)

\sf{\implies  {cos}^{2}\theta =  {sin}^{2} \theta + 2\cos\theta\sin\theta }

\sf{By \: adding \: {cos}^{2} \theta \: to \: the \: both \: sides }

\sf{\implies 2 {cos}^{2} \theta =  {cos}^{2} \theta +  {sin}^{2}\theta  + 2\cos\theta + 2\cos\theta\sin\theta}

\sf{\implies 2 {cos}^{2} \theta = ( {cos\theta + \sin\theta})^{2}  }

\sf{\implies  \sqrt{2}\cos\theta = \cos\theta + \sin\theta }

Hence, proved.

\huge\underline\mathfrak\color{olive}ThankYou

Similar questions