Math, asked by fadilahkhanA, 5 months ago

spammers stay away!!!aswer as soon as possible​

Attachments:

Answers

Answered by topper5438
1

Answer:

i) 1/10 or 0.1

ii) 9/10 or 0.9

iii) 6/10 or 0.6

Step-by-step explanation:

Let the total balls be x

number of Balls marked A = 60% ⇒ 60 × x   ⇒6x

                                                           100            10

Similarly Number of Balls marked B = 3x

                                                               10

Number of balls marked C = 10% as 100% - (60% + 30%)

                                             = x            

                                               10        

Therefore;

  (i) Probability =  Number of Balls Marked C

                                 Total number of balls

                        = x/10

                              x

                       ⇒ 1/10   = 0.1

(ii) Number of balls marked as A & B = 6x/10 + 3x/10

                                                             = 9x / 10

   Probability =  Number of Balls Marked A & B

                             Total number of balls

                      = 9x / 10

                              x

                     ⇒ 9 / 10  =  0.9

(iii)  Number of balls marked neither B or C is Number of balls marked A

so Probability =  Number of Balls Marked A

                                 Total number of balls

                          = 6x / 10

                                 x

                         ⇒ 6 / 10  = 0.6

Hope it helps you !!!!!!!!!!!!!

Answered by silu12
6

Answer:

A box contains 60% balls, letter A is marked, 30% balls, letter B is marked, 10% balls, letter C is marked.

i)

Total number of all possible outcomes = 100

Number of favourable outcomes = 10

Required Probability =

 \frac{Number  \: of favourable  \: outcomes}{Total \:  number  \: of all  \: possible  \: outcomes}

The probability that the ball drawn is marked A =

ii)

 \frac{Number of favourable outcomes}{Total number of all possible outcomes}

The probability that the ball drawn is marked B =

 \frac{Number of favourable outcomes}{Total number of all possible outcomes}

iii)

The probability that the ball drawn is neither B nor C

= 1 - [P(B) + P(C)]

= 1 - [3/10 + 1/10]

= 1 - 4/10

= 6/10

= 3/5

Similar questions