Math, asked by enjoysexothermicity, 3 months ago

spammers will be reported.

please answer​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 log( \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2}  -  {y}^{2} } )  =  {e}^{k} \\

 log( {x}^{2}  +  {y}^{2} )  -  log( {x}^{2} -  {y}^{2}  )  =  {e}^{k}

Differentiating both sides,

 =  >  \frac{2x + 2y \frac{dy}{dx} }{ {x}^{2}  +  {y}^{2} }  -  \frac{2x - 2y \frac{dy}{dx}  }{ {x}^{2} -  {y}^{2}  }  = 0 \\

 = >  \frac{2x}{ {x}^{2} +  {y}^{2}  }  +  \frac{2y}{ {x}^{2}  +  {y}^{2} } \frac{dy}{dx}   -  \frac{2x}{ {x}^{2} -  {y}^{2}  }  +  \frac{2y}{ {x}^{2} -  {y}^{2}  } \frac{dy}{dx}   = 0 \\

 =  > 2x( \frac{ {x}^{2} -  {y}^{2} -  {x}^{2}   -  {y}^{2}  }{ ({x}^{2} +  {y}^{2} ) ( {x}^{2} -  {y}^{2} ) } ) +  2y\frac{ {x}^{2} -  {y}^{2} +  {x}^{2}  +  {y}^{2}   }{( {x}^{2}  +  {y}^{2} )( {x}^{2} } -  {y}^{2)}  ) \frac{dy}{dx}  = 0 \\

 =  >  -  \frac{4x {y}^{2} }{ {x}^{4}  -  {y}^{4} }  +  \frac{4y {x}^{2} }{ {x}^{4}  -  {y}^{4} } \frac{dy}{dx}   = 0 \\

 =  > \frac{4y {x}^{2} }{ {x}^{4} -  {y}^{4}  }   \frac{dy}{dx}  =  \frac{4x {y}^{2} }{ {x}^{4} -  {y}^{4}  }  \\

 =  >  \frac{dy}{dx}  =  \frac{y}{x}  \\

Similar questions