Physics, asked by Anonymous, 8 months ago

SPAMMING WILL BE REPORTED WITHOUT ANY DELAY​

Attachments:

Answers

Answered by Anonymous
10

Given:

Electric field intensity due to infinite line charge (E) =  \sf 9 \times 10^4 \ NC^{-1}

Distance from the line charge (r) = 2 cm = 0.02

To Find:

Linear charge density  \sf (\lambda)

Answer:

Electric field intensity due to a infinite long straight line charge is given as:

 \boxed {\bf {E = \dfrac{\lambda}{2\pi \epsilon_0 r}}}

By substituting values we get:

\rm  \implies  \cancel{9} \times  {10}^{4}  = \dfrac{ \cancel{2} \times  \cancel{9} \times  {10}^{9}   \times  \lambda}{ \cancel{2} \times  {10}^{ - 2} } \\  \\ \rm  \implies   {10}^{4}  =  \frac{ {10}^{9}  \times  \lambda}{ {10}^{  - 2} }  \\  \\  \rm  \implies  \lambda =  {10}^{4 - 2 - 9}  \\  \\ \rm  \implies  \lambda =  {10}^{ - 7}  \: C {m}^{ - 1}

 \therefore  \boxed{\mathfrak{Linear \ charge \ density \ (\lambda) = 10^{-7} \ C/m}}

Answered by snehildhiman7
0

Answer:

Electric field intensity due to infinite line charge (E) = \sf 9 \times 10^4 \ NC^{-1}9×10

4

NC

−1

Distance from the line charge (r) = 2 cm = 0.02

To Find:

Linear charge density \sf (\lambda)(λ)

Answer:

Electric field intensity due to a infinite long straight line charge is given as:

\boxed {\bf {E = \dfrac{\lambda}{2\pi \epsilon_0 r}}}

E=

2πϵ

0

r

λ

By substituting values we get:

\begin{gathered}\rm \implies \cancel{9} \times {10}^{4} = \dfrac{ \cancel{2} \times \cancel{9} \times {10}^{9} \times \lambda}{ \cancel{2} \times {10}^{ - 2} } \\ \\ \rm \implies {10}^{4} = \frac{ {10}^{9} \times \lambda}{ {10}^{ - 2} } \\ \\ \rm \implies \lambda = {10}^{4 - 2 - 9} \\ \\ \rm \implies \lambda = {10}^{ - 7} \: C {m}^{ - 1}\end{gathered}

9

×10

4

=

2

×10

−2

2

×

9

×10

9

×λ

⟹10

4

=

10

−2

10

9

×λ

⟹λ=10

4−2−9

⟹λ=10

−7

Cm

−1

\therefore∴ \boxed{\mathfrak{Linear \ charge \ density \ (\lambda) = 10^{-7} \ C/m}}

Linear charge density (λ)=10

−7

C/m

Similar questions