spams stay away. Unwanted answers will be reported
Attachments:
Answers
Answered by
4
Solution
Given :-
- x = (2 + √5)^(1/2) + (2 - √5)^(1/2)
- y = (2 + √5)^(1/2) - (2 - √5)^(1/2)
Find :-
- Value of x² + y².
Explanation
First Calculate, x².
==> x² = [(2 + √5)^(1/2) + (2 - √5)^(1/2) ]²
Or,
==> x² = [{√(2+√5)} + {√(2-√5)}]²
Using Formula
- (a + b)² = a² + b² + 2ab
==> x² = {√(2+√5)}² + {√(2-√5)}² + 2. √(2+√5).(2-√5)
==> x² = (2+√5) + (2- √5) + 2.√(2² - 5)
==> x² = (2 + 2)+(√5-√5) + 2.√(4-5)
==> x² = 4 + 2√(-1)
we know,
- √-1 = i
==> x² = 4 + 2i _____________(1)
And, Now calculate y²
==> y² = [{√(2+√5)} - {√(2-√5)}]²
==> y² = {√(2+√5)}² + {√(2-√5)}² - 2. √(2+√5).(2-√5)
==> y² = (2+√5) + (2- √5) - 2.√(2² - 5)
==> y² = (2 + 2)+(√5-√5) - 2.√(4-5)
==> y² = 4 - 2√(-1)
==> y² = 4 - 2i ______________(2)
Now, Calculate ( x² - y²)
= x² - y²
keep value by equ(1) & equ(2)
= (4 + 2i) - (4 - 2i)
= 4 + 2i - 4 + 2i
= 0 + 4i
= 4i
Or,
= √(-4) .
Hence
- Value of (x² - y²) will be = 4i = √(-4)
___________________
Similar questions