Math, asked by haiderullahsuit013, 1 month ago

specify the type of ODE based on its characteristics and find the solution.

(2y^2 x-2y^3 )dx+(4y^3-6y^2 x+2yx^2 )dy=0​

Answers

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\textsf{Differential equation is}

\mathsf{(2xy^2-2y^3)dx+(4y^3-6xy^2+2x^2y)dy=0}

\underline{\textbf{To find:}}

\textsf{Solution of the given differential equation}

\underline{\textbf{Solution:}}

\textsf{The equation is Homogeneous differential equation}

\mathsf{(2xy^2-2y^3)dx+(4y^3-6xy^2+2x^2y)dy=0}

\textsf{This can be written as}

\mathsf{(4y^3-6xy^2+2x^2y)dy=-(2xy^2-2y^3)dx}

\mathsf{\dfrac{dy}{dx}=-\dfrac{2xy^2-2y^3}{4y^3-6xy^2+2x^2y}}

\mathsf{\dfrac{dy}{dx}=\dfrac{-2xy^2+2y^3}{4y^3-6xy^2+2x^2y}}

\mathsf{Put\;y=vx}

\implies\mathsf{\dfrac{dy}{dx}=v.1+x\dfrac{dv}{dx}}

\mathsf{v+x\dfrac{dv}{dx}=\dfrac{-2x(v^2x^2)+2v^3x^3}{4v^3x^3-6x(v^2x^2)+2x^2(vx)}}

\mathsf{v+x\dfrac{dv}{dx}=\dfrac{-2v^2x^3+2v^3x^3}{4v^3x^3-6v^2x^3+2vx^3}}

\mathsf{v+x\dfrac{dv}{dx}=\dfrac{x^3(-2v^2+2v^3)}{x^3(4v^3-6v^2+2v)}}

\mathsf{x\dfrac{dv}{dx}=\dfrac{-2v^2+2v^3}{4v^3-6v^2+2v}-v}

\mathsf{x\dfrac{dv}{dx}=\dfrac{-2v^2+2v^3-4v^4+6v^3-2v^2}{4v^3-6v^2+2v}}

\mathsf{x\dfrac{dv}{dx}=\dfrac{-4v^4+8v^3-4v^2}{4v^3-6v^2+2v}}

\mathsf{x\dfrac{dv}{dx}=\dfrac{-4(v^4-2v^3+v^2)}{4v^3-6v^2+2v}}

\textsf{Separating the variable, we get}

\mathsf{\dfrac{4v^3-6v^2+2v}{v^4-2v^3+v^2}\;dv=-4\;\dfrac{dx}{x}}

\textsf{Integrating on bothsides, we get}

\mathsf{\displaystyle\int\dfrac{4v^3-6v^2+2v}{v^4-2v^3+v^2}\;dv=-4\int\dfrac{dx}{x}}

\textsf{In L.H.S, Numerator is the actual derivative of denominator}

\mathsf{log(v^4-2v^3+v^2)=-4\;log\,x+logC}

\mathsf{log(v^4-2v^3+v^2)=log\,x^{-4}+logC}

\mathsf{log(v^4-2v^3+v^2)=log\,x^{-4}C}

\implies\mathsf{v^4-2v^3+v^2=\dfrac{C}{x^4}}

\implies\mathsf{\dfrac{y^4}{x^4}-2\dfrac{y^3}{x^3}+\dfrac{y^2}{x^2}=\dfrac{C}{x^4}}

\implies\mathsf{\dfrac{y^4-2xy^3+x^2y^2}{x^4}=\dfrac{C}{x^4}}

\implies\boxed{\mathsf{y^4-2xy^3+x^2y^2=C}}

\textsf{which is the required solution}

\underline{\textbf{Find more:}}

Solve x(x-y)dy+y^2dx=0​

https://brainly.in/question/13164355

The complementary function of (D2 + 169)y = 0 isa. Acos 12x + Bsin 12x

b. A cos 13x + B sin 13x

C. A cos 15x + B sin 15x

Acos 25x + Bsin 25x

d​

https://brainly.in/question/36564867  


amansharma264: excellent
Similar questions