Math, asked by yashrajdangi, 11 months ago

split in middle term x^2-x+1/4

Answers

Answered by shadowsabers03
0

It's easier to split the middle term -x as,

\displaystyle\longrightarrow\sf{-x=(u+v)x+(u-v)x}

\displaystyle\longrightarrow\sf{-1=u+v+u-v}

\displaystyle\longrightarrow\sf{u=-\dfrac{1}{2}}

We know the middle term should be split into two in such a way that their product must be equal to the term in \displaystyle\sf{x^2} whose coefficient is equal to the product of the coefficient of \displaystyle\sf{x^2} in the given polynomial and the constant term. Thus,

\displaystyle\longrightarrow\sf{[(u+v)x][(u-v)x]=\dfrac{1}{4}x^2}

\displaystyle\longrightarrow\sf{(u+v)(u-v)=\dfrac{1}{4}}

\displaystyle\longrightarrow\sf{u^2-v^2=\dfrac{1}{4}}

\displaystyle\longrightarrow\sf{\left(-\dfrac{1}{2}\right)^2-v^2=\dfrac{1}{4}}

\displaystyle\longrightarrow\sf{\dfrac{1}{4}-v^2=\dfrac{1}{4}}

\displaystyle\longrightarrow\sf{v=0}

Therefore,

\displaystyle\longrightarrow\sf{u+v=-\dfrac{1}{2}}

\displaystyle\longrightarrow\sf{u-v=-\dfrac{1}{2}}

Hence the middle term should be split as,

\displaystyle\longrightarrow\sf{\underline{\underline{-x=-\dfrac{1}{2}x-\dfrac{1}{2}x}}}

Let me factorise the polynomial.

\displaystyle\longrightarrow\sf{x^2-x+\dfrac{1}{4}=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}}

\displaystyle\longrightarrow\sf{x^2-x+\dfrac{1}{4}=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)}

\displaystyle\longrightarrow\sf{\underline{\underline{x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2}}}

Answered by classofankur
0

Answer:

solution is in the attachment

Step-by-step explanation:

Attachments:
Similar questions