Math, asked by apoo007, 1 year ago

split the middle term of 2x² - 2√2x -3 ?

Answers

Answered by Anonymous
16
Hello friend

Good morning

Your answer is given below :

 =  > 2 {x}^{2}  - 2 \sqrt{2} x - 3 \\  \\  =  > 2 {x}^{2}  - 3 \sqrt{2}   +  1 \sqrt{2}x  - 3  \\  \\ =  >  \sqrt{2} x \: ( \sqrt{2} x - 3) + 1( \sqrt{2} x - 3) \\  \\  =  > ( \sqrt{2 }  x + 1)( \sqrt{2} x -3) \\  \\  =  > x \:  =  \frac{ - 1}{ \sqrt{2} }  \: and \:   \frac{3}{ \sqrt{2} }


I hope it will help you a lot

Thanks have a good day

❤❤❤❤❤❤❤❤❤❤❤❤

Anonymous: ..............Ok..Mei apne kosis kerta hoo tum apne taraf se karo
Anonymous: Bye...Jai bajarang bali....Good night and have adventurous dreams
Answered by AkashMathematics
5

x= 1/√2 and x=-3/√2

Split the middle term of 2x² - 2√2x -3 ?

2 {x}^{2}  - (3 \sqrt{2x} -  \sqrt{2x} )  - 3 \\ 2 {x}^{2}  - 3 \sqrt{2x}  \:  \:  \:  \:  \:  \: -  \sqrt{2x} - 3 \\ \:  \sqrt{2x} ( \sqrt{2x}  + 3) \:  \:  \:  \:  - 1( \sqrt{2x}  + 3) \\ factors \: are =  > \\  (\sqrt{2x}  + 3) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( \sqrt{2x}  - 1) \\  \\  \\ when \:  \:  \:  \:  \sqrt{2x}  - 1 = 0 \\  \sqrt{2x}  = 1 \\  x =  \frac{1}{ \sqrt{2} }  \\  \\  \\ when \:  \:  \:  \sqrt{2x }  + 3 = 0 \\  \sqrt{2x }  =  - 3 \\ x =   \frac{ - 3}{ \sqrt{2} }

Attachments:
Similar questions