sqrt(3x + 1) - sqrt(x - 1) = 2
Answers
Answer:
x = 1 and x = 5
Step-by-step explanation:
- = 2
First, because there are two square roots, we have to determine domain of function y = - .
3x + 1 ≥ 0 ==> x ≥ -
x - 1 ≥ 0 ==> x ≥ 1
So, in set of real number the function exist if x ≥ 1 .
( - )² = 2²
()² - 2 × + ()² = 4
3x + 1 - 2 + x - 1 = 4
4x - 2 = 4
- 2 = 4 - 4x
= 2x - 2
()² = (2x - 2)²
(3x + 1)(x - 1) = 4x² - 8x + 4
3x² - 2x - 1 - 4x² + 8x - 4 = 0
- x² + 6x - 5 = 0
x² - 6x + 5 = 0
D = 36 - 20 = 16
= (6 ± √D) / 2 = 3 ± 2
= 1
= 5
x = 1 or 5
Step-by-step explanation:
√(3x+1) - √(x-1) = 2
Square on both sides, we get:
[√(3x+1) - √(x-1)]² = 2²
(3x+1) + (x-1) -2√(3x+1)(x-1) = 4
4x -2√(3x+1)(x-1) = 4
4x - 4 = 2√(3x+1)(x-1)
2x -2 = √(3x+1)(x-1)
(2x -2)² = [√(3x+1)(x-1)]²
4x² + 4 - 8x = (3x+1)(x-1)
4x² + 4 - 8x = (3x² +x - 3x - 1)
x² - 6x + 5 = 0
x² - 5x -x + 5 = 0
x(x-5) -1(x-5) = 0
(x-5) (x-1) = 0
Therefore x = 1 or 5.