Math, asked by aaryandeb88, 8 months ago

sqrt(3x + 1) - sqrt(x - 1) = 2

Answers

Answered by Anonymous
14

Answer:

x = 1 and x = 5

Step-by-step explanation:

\sqrt{3x+1} - \sqrt{x-1} = 2

First, because there are two square roots, we have to determine domain of function y = \sqrt{3x+1} - \sqrt{x-1} .

3x + 1 ≥ 0 ==> x ≥ - \frac{1}{3}

x - 1 ≥ 0 ==> x ≥ 1

So, in set of real number the function exist if x ≥ 1 .

(\sqrt{3x+1} - \sqrt{x-1})² = 2²

(\sqrt{3x+1})² - 2\sqrt{3x+1} × \sqrt{x-1} + (\sqrt{x-1})² = 4

3x + 1 - 2\sqrt{(3x+1)(x-1)} + x - 1 = 4

4x - 2\sqrt{(3x+1)(x-1)} = 4

- 2\sqrt{(3x+1)(x-1)} = 4 - 4x

\sqrt{(3x+1)(x-1)} = 2x - 2

(\sqrt{(3x+1)(x-1)})² = (2x - 2)²

(3x + 1)(x - 1) = 4x² - 8x + 4

3x² - 2x - 1 - 4x² + 8x - 4 = 0

- x² + 6x - 5 = 0

x² - 6x + 5 = 0

D = 36 - 20 = 16

x_{12} = (6 ± √D) / 2 = 3 ± 2

x_{1} = 1

x_{2} = 5

Answered by topwriters
14

x = 1 or 5

Step-by-step explanation:

√(3x+1) - √(x-1) = 2

Square on both sides, we get:

[√(3x+1) - √(x-1)]²  = 2²

  (3x+1) + (x-1) -2√(3x+1)(x-1) = 4

 4x -2√(3x+1)(x-1) = 4

  4x - 4 =  2√(3x+1)(x-1)

  2x -2 = √(3x+1)(x-1)

   (2x -2)² = [√(3x+1)(x-1)]²

   4x² + 4 - 8x = (3x+1)(x-1)

    4x² + 4 - 8x = (3x² +x - 3x - 1)

    x² - 6x + 5 = 0

    x² - 5x -x + 5 = 0

    x(x-5) -1(x-5) = 0

   (x-5) (x-1) = 0

  Therefore x = 1 or 5.

Similar questions