sqrt(5x - 4) + sqrt(3x + 1) < 3
Answers
x ∈(1,40) when the expression is by taking square on both sides of the expression.
Given that,
We have to solve the square root function and find the value of x.
We know that,
Take the expression
Now, checking what is the square root value of each term
First, 5x - 4 ≥ 0
x ≥
And 3x + 1 ≥0
x ≥
So,
Taking square on both sides,
5x - 4 < 9 + 3x + 1 - 6
5x -3x -4 -10 < -6
2x - 14 < -6
x - 7 < -3
Taking square on both sides,
(x - 7)² < (-3)²
x² - 14x + 49 < 9 (3x+1)
x² -14x + 49 < 27x + 9
x² -14x -27x + 49 -9 <0
x² - 41x + 40 < 0
(x - 1)(x - 40) < 0
x ∈(1,40)
Therefore, x ∈(1,40) when the expression is
To know more, visit:
https://brainly.in/question/33551114
https://brainly.in/question/51499511
#SPJ1
EXPLANATION.
⇒ √(5x - 4) + √(3x + 1) < 3.
We need to find the domain of the expression.
if any expression written in square root the,
square root must be ≥ 0.
Now, we can write expression as,
⇒ 5x - 4 ≥ 0.
⇒ 5x ≥ 4.
⇒ x ≥ 4/5. - - - - - (1).
⇒ 3x + 1 ≥ 0.
⇒ 3x ≥ - 1.
⇒ x ≥ - 1/3. - - - - - (2).
Now, we shift √(3x + 1) in RHS, we get.
⇒ √(5x - 4) < 3 - √(3x + 1).
Squaring on both sides of the expression, we get.
⇒ [√(5x - 4)]² < [3 - √(3x + 1)]².
⇒ (5x - 4) < (3)² + [√(3x + 1)]² - 2(3)(√(3x + 1).
⇒ 5x - 4 < 9 + 3x + 1 - 6√(3x + 1).
⇒ 5x - 4 < 10 + 3x - 6√(3x + 1).
⇒ 5x - 4 - 10 - 3x < - 6√(3x + 1).
⇒ 2x - 14 < - 6√(3x + 1).
⇒ 2(x - 7) < - 6√(3x + 1).
⇒ (x - 7) < - 3√(3x + 1).
Now, again squaring on both sides of the expression, we get.
⇒ (x - 7)² < [-3√(3x + 1)]².
⇒ x² + 49 - 14x < 9(3x + 1).
⇒ x² + 49 - 14x < 27x + 9.
⇒ x² + 49 - 14x - 27x - 9 < 0.
⇒ x² - 41x + 40 < 0.
Factorizes the equation into middle term splits, we get.
⇒ x² - 40x - x + 40 < 0.
⇒ x(x - 40) - 1(x - 40) < 0.
⇒ (x - 1)(x - 40) < 0.
Now, we find the zeroes of the expression, we get.
⇒ (x - 1)(x - 40) = 0.
⇒ x = 1 and x = 40.
Put this point on wavy curve method, we get.
⇒ x ∈ (1, 40).
∴ √(5x - 4) + √(3x + 1) < 3 is equal to x ∈ (1, 40).
MORE INFORMATION.
Rules of inequality.
We can multiply Or divide any non - zero number "k" on both sides of inequality sign of inequality will change according to sign of k that is,
If k > 0 then sign of inequality will remain same.
If k < 0 then sign of inequality will get reversed.
Wavy curve method.
Step - 1 : Check structure.
Step - 2 : Find critical points.
Step - 3 : Plot all critical points on number lines.
Step - 4 : Check sign of given example by putting value of x from different parts of number line.