Math, asked by mandeepkalra60, 4 months ago

square and rectangle have same perimeter if the side of squareis 60 cm and length of rectangle is 80 m which has more area​

Answers

Answered by Sen0rita
10

☯︎ Given that,

  • \sf \: Square \: and \: rectangle \: have \: same \: perimeter.
  • \sf \: Side \: of \: square \: is \: \bold{60cm}
  • \sf \: Length \: of \: the \: rectangle \: is \: \bold{80cm}

☯︎ We have to find,

  • \sf \: Which \: has \: more \: area \: ?

__________________________

Firstly, we'll find the perimeter of the square.

\boxed{\boxed{\bold\purple{perimeter \: of \: a \: square = 4 \times side}}}

\sf\implies \: perimeter \: of \: the \: square \:  = 4 \times side \\  \\ \sf\implies \: perimeter \: of \: the \: square \:  = 4 \times 60 \\  \\ \sf\implies \: perimeter \: of \: the \: square \:  = \boxed{\boxed{\sf\purple{240cm}}}\bigstar

Now, we'll find the perimeter of the rectangle.

\boxed{\boxed{\bold\purple{perimeter \: of \: a \: rectangle \:  =  \: 2(length \:  +  \: breadth)}}}

Put the value of perimeter of the square in the formula.

\sf\implies \: perimeter \: of \: the \: rectangle \:  = 2(l + b) \\  \\ \sf\implies \: 240 = 2(80 + b) \\  \\ \sf\implies \: \:  \frac{240}{2}  = 80 + b \\  \\ \sf\implies \: 120 = 80 + b \\  \\ \sf\implies \: 120 - 80 = b \\  \\ \sf\implies \: b = \boxed{\boxed{\sf\purple{40cm}}}\bigstar

Now, we'll find the area of the rectangle.

\boxed{\boxed{\bold\purple{area \: of \: a \: rectangle \:  = length \:  \times breadth}}}

\sf\implies \: area \: of \: the \: rectangle \:  = l \times b \\  \\ \sf\implies \: area \: of \: the \: rectangle \:  = 40 \times 80  \\  \\ \sf\implies \: area \: of \: the \: rectangle \:  \:  = \boxed{\boxed{\sf\purple{3200 {cm}^{2} }}}\bigstar

Now, find the area of the square.

\boxed{\boxed{\bold\purple{area \: of \: a \: square \:  =  {side}^{2} }}}

\sf\implies \: area \: of \: the \: square \:  =  {side}^{2}  \\  \\ \sf\implies \: area \: of \: the \: square \:  =  {60}^{2}  \\  \\ \sf\implies \: area \: of \: the \: square \:  =  \boxed{\boxed{\sf\purple{3600 {cm}^{2} }}}\bigstar

\sf \: 3600 > 3200

\sf\therefore\underline{Hence, \: the \: area \: of \: the \: square \: is \: more \: than \: the \: area \: of \: the \: rectangle.}


Anonymous: wlcm xD ❣️
Anonymous: why you are soooooo pro in answering???
Anonymous: OH MA GUUUD
Anonymous: (O_O)
Sen0rita: omagooo xD
Sen0rita: thenkuu :D
Cordelia: Awesome ✓❤️
Sen0rita: thenku ❤️ :p
Clαrissα: Outstanding dii! ❤️✨
Sen0rita: thenkuu siso ☃️❤️
Answered by Cordelia
5

\:\:\:\: \large \underline {\sf{Given\::}}

➟ Square and rectangle have same perimeter

➟ Side of square is 60 cm

➟ Length of rectangle is 80 cm

________________________________

\:\:\:\: \large \underline {\sf{To\:Find\::}}

➟ Which has more area

________________________________

\:\:\:\: \large \underline {\sf{Solution\::}}

\:\:\:\: \bigstar \: \large{\boxed{\boxed{\sf{\pink{Formula\:used\:here\::}}}}}

  1. Perimeter of square = 4 × side
  2. Perimeter of rectangle = 2(l + b)
  3. Area of square = side × side
  4. Area of rectangle = length × breadth

________________________________

\:\:\:\: \large \underline {\sf{Perimeter\:of\:square\::}}

➟ 4 × side

➟ 4 × 60

240 cm

________________________________

  • It is mentioned both have same perimeter , so perimeter of rectangle is also equal to 240 cm

\:\:\:\: \large \underline {\sf{Breadth\:of\:Rectangle\::}}

➟ Perimeter = 2(l + b)

➟ 240 = 2 ( 80 + b )

➟ 240/2 = 80 + b

➟ 120 = 80 + b

➟ b = 120 - 80

Breadth = 40 cm

________________________________

\:\:\:\: \large \underline {\sf{Area\:of\:square\::}}

➟ side × side

➟ 60 × 60

3600 cm²

________________________________

\:\:\:\: \large \underline {\sf{Area\:of\: rectangle\::}}

➟ length × breadth

➟ 80 × 40

3200 cm²

________________________________

\:\:\:\: \bigstar \: \underline {\sf{\pink{Square\:has\:larger\:area\:by\:400\:{cm}^{2}}}}

And we are done !

_____________________


Sen0rita: Fantabulous ♡︎ :D
Cordelia: Aapse hi sikha h :p ❤️ thnku :3
Sen0rita: xD
Anonymous: Outstanding ❤️
Cordelia: Thank You :p ❤️
Similar questions