Math, asked by babysanu718, 1 day ago

Square of any positive odd integer is of the form 8m +1.​

Answers

Answered by tennetiraj86
2

Solution :-

We know that

Euclid's Division Algorithm: Given positive integers a and b there exists unique pair of integers q and r satisfying a = bq+r , 0≤ r< b

Let a be any positive integer.

Let us apply Euclid's Division Algorithm with a and b = 8

a = 8q +r ---------(1)

Where, 0≤r<8

The possible values of r = 0,1,2,3,4,5,6,7.

Case -1:-

r = 0:

If r = 0 then (1) becomes

a = 8q+0

=> a = 8q

On squaring both sides then

=> a² = (8q)²

=> a² = 8×8q²

=> a² = 8m ------------(2)

Where, m = 8q²

Case-2:-

r = 1 :

If r = 1 then (1) becomes

a = 8q+1

On squaring both sides then

=> a² = (8q+1)²

=> a² = (8q)²+2(8q)(1)+1²

=> a² = 64q²+16q+1

=> a² = 8(8q²+2q)+1

=> a² = 8m+1 ------------(3)

Where, m = 8q²+2q

Case-3:-

r = 2:

If r = 2 then (1) becomes

a = 8q+2

On squaring both sides then

=> a² = (8q+2)²

=> a² = (8q)²+2(8q)(2)+2²

=> a² = 64q²+32q+4

=> a² = 64q²+32q+8-4

=> a² = 8(8q²+4q+1)-4

=> a² = 8m-4 ------------(4)

Where, m = 8q²+4q+1

Case-4:-

r = 3:

If r = 3 then (1) becomes

a = 8q+3

On squaring both sides then

=> a² = (8q+3)²

=> a² = (8q)²+2(8q)(3)+3²

=> a² = 64q²+48q+9

=> a² = 64q²+48q+8+1

=> a² = 8(8q²+6q+1)+1

=> a² = 8m+1 ------------(5)

Where, m = 8q²+6q+1

Case-5:-

r = 4:-

If r = 4 then (1) becomes

a = 8q+4

On squaring both sides then

=> a² = (8q+4)²

=> a² = (8q)²+2(8q)(4)+4²

=> a² = 64q²+64q+16

=> a² = 8(8q²+8q+2)

=> a² = 8m------------(6)

Where, m = 8q²+8q+2

Case-6:-

r = 5:-

If r = 5 then (1) becomes

a = 8q+5

On squaring both sides then

=> a² = (8q+5)²

=> a² = (8q)²+2(8q)(5)+5²

=> a² = 64q²+80q+25

=> a² = 64q²+80q+24+1

=> a² = 8(8q²+10q+3)+1

=> a² = 8m+1 ------------(7)

Where, m = 8q²+10q+3

Case-6:-

r = 6:-

If r = 6 then (1) becomes

a = 8q+6

On squaring both sides then

=> a² = (8q+6)²

=> a² = (8q)²+2(8q)(6)+6²

=> a² = 64q²+96q+36

=> a² = 64q²+96q+32+4

=> a² = 8(8q²+12q+4)+4

=> a² = 8m+4 ------------(8)

Where, m = 8q²+12q+4

Case-7:-

r = 7:-

If r = 7 then (1) becomes

a = 8q+7

On squaring both sides then

=> a² = (8q+7)²

=> a² = (8q)²+2(8q)(7)+7²

=> a² = 64q²+112q+49

=> a² = 64q²+112q+48+1

=> a² = 8(8q²+14q+6)+1

=> a² = 8m+1 ------------(9)

Where, m = 8q²+14q+6

From (3),(5),(7)&(9)

We conclude that " The square of any positive odd integer is of the form of 8m+1 ".

Hence, Proved.

Similar questions