Math, asked by samaniaditya2005, 9 months ago

square root of 1-cos^2 30/1-sin ^ 2 30​

Answers

Answered by Tanaysinha10
11

Answer:

1-cos^2 30/1-sin^2 30

Step-by-step explanation:

√sin^2 30/√cos^2 30 = sin 30/cos 30=tan 30= 1/√3

Answered by krishnaanandsynergy
1

Answer:

We can solve this question using trigonometric formula.

Final Answer: \sqrt{\frac{1-cos^2 (30\textdegree)}{1-sin^2 (30\textdegree)} }=\frac{1}{\sqrt{3} }

Step-by-step explanation:

The given question is,  \sqrt{\frac{1-cos^2 (30\textdegree)}{1-sin^2 (30\textdegree)} }

  • In this question, numerator is equal to 1-cos^2\theta and the denominator is equal to 1-sin^2\theta.
  • Already we know the formula in trigonometric is,

                    sin^2\theta+cos^2\theta=1

  • From this formula, 1-cos^2\theta = sin^2\theta and 1-sin^2\theta=cos^2\theta
  • Now apply the above formula in the given question.
  • That is,    \sqrt{\frac{1-cos^2 (30\textdegree)}{1-sin^2 (30\textdegree)} }=\sqrt{\frac{sin^2 (30\textdegree)}{cos^2 (30\textdegree)} }

                                           =\sqrt{\frac{sin (30\textdegree)^2}{cos(30\textdegree)^2} }

                                           =\sqrt{(\frac{sin (30\textdegree)}{cos(30\textdegree)})^2 }

  • Square root can be written in the following form.

                                           ={(\frac{sin (30\textdegree)}{cos(30\textdegree)})^{\frac{1}{2}* 2 }  

                                           =\frac{sin (30\textdegree)}{cos(30\textdegree)} }

  • Trigonometric formula, \frac{sin\theta}{cos\theta} = tan\theta. So that, the above equation is,

                               \frac{sin (30\textdegree)}{cos(30\textdegree)} }=tan30\textdegree

  • From trigonometric table tan 30\textdegree=\frac{1}{\sqrt{3} }
  • Final Answer : \sqrt{\frac{1-cos^2 (30\textdegree)}{1-sin^2 (30\textdegree)} }=\frac{1}{\sqrt{3} }

Similar questions