Math, asked by altamushmalik, 1 year ago

Square root of 1 +iota

Answers

Answered by pc725223gmailcom
0

Answer:

 let \: \sqrt{(1 + i)}  = a + ib \\ square \: both \: side \\ 1 + i =  {a}^{2}  +  {i}^{2}  {b}^{2}  + 2aib \\ 1 + i =  {a}^{2}   -  {b}^{2}  + 2aib \\ then \\  {a}^{2}  -  {b}^{2}  = 1 \\ 2ab   = 1 \\ w e\: know \: that \\   {( {a}^{2}  +  {b}^{2} )}^{2}  =  {( {a}^{2}  -  {b}^{2} )}^{2}  + 4 {a}^{4}  {b}^{4}  \\  =  {(1)}^{2}  + 4   \times {1}^{4}  \\  = 1 + 4 \\  = 5 \\ then \:  {a}^{2}  +  {b}^{2}  =  \sqrt{5}  \\  {a}^{2}  -  {b}^{2}  = 1 \\ 2 {a}^{2}  =  \sqrt{5}  + 1 \\  {a}^{2}  =  \frac{ \sqrt{5} + 1 }{2}  \\ a =  \sqrt{ \frac{ \sqrt{5}  + 1}{2} }

now put the values and find the value of

a+ib

Similar questions