Math, asked by ssameed, 1 year ago

Square root of 1183/2023 with steps

Answers

Answered by AbhijithPrakash
57

Answer:

\displaystyle\sqrt{\frac{1183}{2023}}=\frac{13}{17}\quad \left(\mathrm{Decimal:\quad }\:0.76470\dots \right)

Step-by-step explanation:

\displaystyle\sqrt{\frac{1183}{2023}}

\black{\displaystyle\frac{1183}{2023}}

\gray{\mathrm{Cancel\:the\:common\:factor:}\:7}

\displaystyle=\frac{169}{289}

\displaystyle=\sqrt{\frac{169}{289}}

\displaystyle\gray{\mathrm{Apply\:radical\:rule\:}\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0}

\displaystyle=\frac{\sqrt{169}}{\sqrt{289}}

\gray{\sqrt{289}=17}

\displaystyle=\frac{\sqrt{169}}{17}

\gray{\sqrt{169}=13}

\displaystyle=\frac{13}{17}

Answered by Anonymous
29

ANSWER

 \sqrt{ \frac{1183}{2023} }  \\  \\ take \:  \: the \:  \: common \:  \: factor \:  \: 7 \\  \\  \frac{7 \sqrt{169} }{7 \sqrt{289} }  \\  \\ then \: \: cancel \:  \: them \\  \\  \frac{ \sqrt{169} }{ \sqrt{289} } \\  \\ value \:  \: of \:  \:  \sqrt{169}  \:  \: is \:  \:  {13}  \\  \\ value \: \: of \:  \:  \sqrt{289}   \:  \: is \:  \: 17 \\  \\  \frac{( { \sqrt{13}) }^{2} }{ ({ \sqrt{17}) }^{2} }    \\  \\ cancel \:  \: them \\  \\  \frac{13}{17}

Hence, the answer is 13/17.

Similar questions