Math, asked by prasannar411, 1 year ago

Square root of (59.29 - square root of 5.29) / square root of (59.29 + square root of 5.29)

Answers

Answered by praneethks
32

Step-by-step explanation:

 \sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }  =  >  \sqrt{ \frac{7.7 - 2.3}{7.7 + 2.3} }  =  >  \sqrt{ \frac{5.4}{10} }

 =  >  \sqrt{0.54}  =  > 0.73484

Hope it helps you.

Answered by pinquancaro
16

\sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }=0.73

Step-by-step explanation:

Given : Expression \sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }

To find : Simplify the expression ?

Solution :

Expression \sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }

We know, \sqrt{59.29}=7.7 and \sqrt{5.29}=2.3

\sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }=\sqrt{ \frac{7.7 - 2.3}{7.7 + 2.3} }

\sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }= \sqrt{ \frac{5.4}{10} }

\sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }=\sqrt{0.54}

\sqrt{ \frac{ \sqrt{59.29}  -  \sqrt{5.29} }{ \sqrt{59.29}  +  \sqrt{5.29} } }=0.73

#Learn more

Simplify5 2/3-5 1/6+2 5/6​

https://brainly.in/question/16206431

Similar questions