Math, asked by omeir3184, 1 month ago

Square root of 9680 by prim factoriqsation method

Answers

Answered by Jungkookjin
0

Answer:

2 x 2 x 2 x 2 x 5 x 11 x 11

Answered by LivetoLearn143
2

\large\underline{\sf{Solution-}}

 \sf{ \:  \sqrt{9680}}

Let evaluate the Prime factorization of 9680.

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:9680 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:4840 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:2420\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:1210 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:605\:\:}}\\ {\underline{\sf{11}}}& \underline{\sf{\:\:121\:\:}}\\ {\underline{\sf{11}}}& \underline{\sf{\:\:11\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

So, Prime Factorization of

 \sf{ \: 9680 =  {2}^{4} \times  {11}^{2} \times 5}

Therefore,

 \sf \:  \sqrt{9680}

\rm \:  =  \:  \sqrt{ {2}^{4}  \times  {11}^{2}  \times 5}

\rm \:  =  \:  {2}^{2} \times 11 \sqrt{5}

\rm \:  =  \: 44 \sqrt{5}

Similar questions