Math, asked by aneesurrahmanparwaaz, 1 month ago

sr9897139 answer this ​

Attachments:

Answers

Answered by MathHacker001
10

\large\bf\underline\red{Answer \:  :-}

6) If a,b and c are in athematic progression then, b-a/c-b is equal to _____.

→ Answer is 1

___________________________________________

7) The 30th term of 10,7,4.... is

We have,

  • First term = a = 10
  • Difference = d = t2 - t1 = 7 - 10 = -3
  • Number of term = n = 30

We use the formula

{\large{\underline{\boxed{\rm{\red{S_{n} = a +(n-1)d}}}}}}

By using formula,

\sf\longrightarrow{S_{30}  = 10 + (30 - 1) - 3} \\  \\ \sf\longrightarrow{S_{30} = 10 + (29) - 3 } \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf\longrightarrow{S_{30} = 10 +  ( - 87) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\ \sf\longrightarrow{S_{30} =  - 77 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

30th term is -77.

Option [D] is correct answer.

_________________________________________

8) Find the sum of first 20 terms of the AP 3,3,3,....

We have,

  • a = 3
  • d = t2 - t1 = 3 - 3 = 0
  • n = 20

We use formula

{\large{\underline{\boxed{\rm{\red{S_{n} = \frac{n}{2} [2a + (n-1)d] }}}}}}

By using formula,

\sf\longrightarrow{S_{20} =  \frac{20}{2} [2(3) + (20 - 1)0]} \\  \\ \sf\longrightarrow{S_{20} =10 [6 + (19 )0]} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{S_{20} = 10(6)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{S_{20} = 60} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Sum of the first 20 term is 60.

Option [B] is correct answer.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions