Math, asked by Manasvipandav, 4 months ago

standard deviations for two observations 1 and 4 is ?​

Answers

Answered by ramyadukuntla
0

Answer:

For the normal distribution, this accounts for 68.27 percent of the set; while two standard deviations from the mean (medium and dark blue) account for 95.45 percent; three standard deviations (light, medium, and dark blue) account for 99.73 percent; and four standard deviations account for 99.994 percent.

please follow me friend and make me as brainliest answer

Answered by ravilaccs
1

Answer:

The standard deviation for two observations is 1.5

Step-by-step explanation:

Given:

observations are 1 and 4

To find:

The standard deviation of the given two observations

Solution:

First, we find out the mean of the given two observations

Mean,\bar{x}=\frac{1+4}{2}\\=\frac{5}{2}$

The formula for Standard deviation :

$$\text { S.D }=\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}}{n}}$$

$$S . D=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{1}-\bar{x}\right)^{2}}{2}}$$

$$S . D=\sqrt{\frac{\left(1-\frac{5}{2}\right)^{2}+\left(4-\frac{5}{2}\right)^{2}}{2}}$$

$$S . D=\sqrt{\frac{\left(\frac{2-5}{2}\right)^{2}+\left(\frac{8-5}{2}\right)^{2}}{2}}$$

\begin{aligned}&S . D=\sqrt{\frac{\left(\frac{-3}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}{2}} \\&S . D=\sqrt{\frac{\frac{9}{4}+\frac{9}{4}}{2}} \\&S . D=\sqrt{\frac{\frac{18}{4}}{2}} \\&\text { S.D }=\sqrt{\frac{\frac{9}{2}}{2}} \\&\text { S.D }=\sqrt{\frac{9}{4}}\end{aligned}

S.D=\frac{3}{2} \\\\=1.5

Similar questions