Math, asked by LYCONTRIX, 1 year ago

★ STANDARD QUESTION 2 ★

★ CONTENT QUALITY SUPPORT REQUIRED ★

EXPRESS AS EQUIVALENT FRACTION WITH RATIONAL DENOMINATOR

 \frac{2 \sqrt{a + 1} }{ \sqrt{a - 1}  -  \sqrt{2a}  +  \sqrt{a + 1} }
★ LEVEL - 100 ★

Answers

Answered by HarishAS
30
Hey friend , Harish here.

Here is your answer:

 \frac{2 \sqrt{a+1} }{\sqrt{a-1}- \sqrt{2a} + \sqrt{a+1}}

\frac{2 \sqrt{a+1} }{\sqrt{a-1}+\sqrt{2a} + \sqrt{a+1}} \times  \frac{ \sqrt{a+1}+ \sqrt{a-1} +\sqrt{2a}} {\sqrt{a+1}+ \sqrt{a-1} + \sqrt{2a}}

\frac{(2 \sqrt{a+1}) ( \sqrt{a+1}+ \sqrt{a-1} + \sqrt{2a}) }{(\sqrt{a+1}+ \sqrt{a-1})^{2}  - (\sqrt{2a})^{2}}

\frac{(2 \sqrt{a+1}) ( \sqrt{a+1}+ \sqrt{a-1} +\sqrt{2a}) }{ 2 (\sqrt{a+1})( \sqrt{a-1})  }

 \frac{(\sqrt{a+1}+ \sqrt{a-1} + \sqrt{2a}) }{ \sqrt{a-1} } \times \frac{\sqrt{a-1}}{\sqrt{a-1}}

 \frac{(\sqrt{a+1}+ \sqrt{a-1} +\sqrt{2a})(\sqrt{a-1}) }{ a-1 }

 \frac{(\sqrt{a^{2}-1}+ (a-1) + (\sqrt{2a^{2}-2a}) }{ a-1 }

This is an equivalent fraction of the given expression with rational denominator.
_____________________________________________________

HarishAS: Sir,Is my answer correct ?
HarishAS: Sir, Now is it correct?
Answered by Anonymous
2

Step-by-step explanation:

⇒hope this helps you....♥️♥️♥️

please mark as brain list....♥️♥️♥️

please follow me....♥️♥️♥️

tell me how useful it is ?? by marking brain list..... please...friend and also with likes....♥️♥️♥️♥️♥️♥️♥️♥️♥️

Hope this information help's you....

•Please follow me.......

________please________

________M@®k________

________@§___________

_______B®@¡Π[ ¡§t_______

Attachments:
Similar questions