Math, asked by LYCONTRIX, 1 year ago

★ STANDARD QUESTION 5 ★

★ CONTENT QUALITY SUPPORT REQUIRED ★

For what value of " m " will the equation
 \frac{x {}^{2}  - bx}{ax - c}  =  \frac{m - 1}{m + 1}

have roots equal in magnitude but opposite in sign

★ LEVEL - 100 ★

Answers

Answered by Anonymous
1

things \: to \: know \:  \\ 1) \: if \: the \: roots \: of \: the \: quadratic  \\  equation  \: a {x}^{2}  + bx \:  + c \:  = 0 \\ are \: equal \: in \: magnitude \: and \: \\  opposite \: in \: sign \: then \\ sum \: f \: roots \: is \: 0 \\
2)final \: result \: m \:  =  \frac{a - b}{a + b} and \\ m \: is \: not \: eqal \: to \:  - 1
Attachments:
Answered by sivaprasath
1
Solution:

_____________________________________________________________


Given :

 \frac{x^2 -bx}{ax - c} = \frac{m-1}{m+1}

Roots are equal and opposite

in sign,.

α = -β
_____________________________________________________________

To Find :Value of m,.

_____________________________________________________________

 \frac{x^2 -bx}{ax - c} = \frac{m-1}{m+1} ⇒ (x² - bx)(m+1) = (m-1)(ax-c)

⇒ (x² - bx)(m + 1) = ( m - 1)(ax - c)

⇒ (m + 1)x² - bmx - bx = amx - mc - ax + c = 0

⇒ (m + 1)x² - bmx - amx + mc + ax - bx - c = 0

⇒ (m+ 1)x² - ((bm + am) - (a - b)) x + mc - c = 0

⇒ (m + 1)x² - (am + bm - a + b ) x + (m - 1)c = 0

⇒ (m + 1)x² - (a(m - 1) + b (m + 1) + (m - 1)c = 0

This equation is in the form,

ax² + bx + c = 0,.

Hence, it is a quadratic equation,.

____________________________

Sum of the zeroes = - \frac{b}{a}

⇒ α + β = - \frac{[- (a(m - 1) + b (m + 1)]}{m+1}

⇒ (-β) + β =  \frac{ (a(m - 1) + b (m + 1)}{m+1}

⇒ 0 =  \frac{ (a(m - 1) + b (m + 1)}{m+1}

⇒ 0 =  (a(m - 1) + b (m + 1)

⇒ 0 = am - a + bm + b

⇒ 0 = am + bm - a + b

⇒ -(-a + b) = am + bm

⇒ a - b = m (a + b)

m =  \frac{a-b}{a+b}

_____________________________________________________________

                                              Hope it Helps !!

⇒ Mark as Brainliest,.
Similar questions