★ STANDARD QUESTION 5 ★
★ CONTENT QUALITY SUPPORT REQUIRED ★
For what value of " m " will the equation
have roots equal in magnitude but opposite in sign
★ LEVEL - 100 ★
Answers
Answered by
1
Attachments:
Answered by
1
Solution:
_____________________________________________________________
Given :
Roots are equal and opposite
in sign,.
α = -β
_____________________________________________________________
To Find :Value of m,.
_____________________________________________________________
⇒ ⇒ (x² - bx)(m+1) = (m-1)(ax-c)
⇒ (x² - bx)(m + 1) = ( m - 1)(ax - c)
⇒ (m + 1)x² - bmx - bx = amx - mc - ax + c = 0
⇒ (m + 1)x² - bmx - amx + mc + ax - bx - c = 0
⇒ (m+ 1)x² - ((bm + am) - (a - b)) x + mc - c = 0
⇒ (m + 1)x² - (am + bm - a + b ) x + (m - 1)c = 0
⇒ (m + 1)x² - (a(m - 1) + b (m + 1) + (m - 1)c = 0
This equation is in the form,
ax² + bx + c = 0,.
Hence, it is a quadratic equation,.
____________________________
Sum of the zeroes =
⇒ α + β =
⇒ (-β) + β =
⇒ 0 =
⇒ 0 =
⇒ 0 = am - a + bm + b
⇒ 0 = am + bm - a + b
⇒ -(-a + b) = am + bm
⇒ a - b = m (a + b)
⇒
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
_____________________________________________________________
Given :
Roots are equal and opposite
in sign,.
α = -β
_____________________________________________________________
To Find :Value of m,.
_____________________________________________________________
⇒ ⇒ (x² - bx)(m+1) = (m-1)(ax-c)
⇒ (x² - bx)(m + 1) = ( m - 1)(ax - c)
⇒ (m + 1)x² - bmx - bx = amx - mc - ax + c = 0
⇒ (m + 1)x² - bmx - amx + mc + ax - bx - c = 0
⇒ (m+ 1)x² - ((bm + am) - (a - b)) x + mc - c = 0
⇒ (m + 1)x² - (am + bm - a + b ) x + (m - 1)c = 0
⇒ (m + 1)x² - (a(m - 1) + b (m + 1) + (m - 1)c = 0
This equation is in the form,
ax² + bx + c = 0,.
Hence, it is a quadratic equation,.
____________________________
Sum of the zeroes =
⇒ α + β =
⇒ (-β) + β =
⇒ 0 =
⇒ 0 =
⇒ 0 = am - a + bm + b
⇒ 0 = am + bm - a + b
⇒ -(-a + b) = am + bm
⇒ a - b = m (a + b)
⇒
_____________________________________________________________
Hope it Helps !!
⇒ Mark as Brainliest,.
Similar questions