Math, asked by megha233, 11 months ago

star one plz tell me the ans​

Attachments:

Answers

Answered by nisshala2003
1

Step-by-step explanation:

1.

x {}^{2}  -  \frac{3x}{10}  -  \frac{1}{10}  = 0

10x {}^{2}  - 3x - 1 = 0

10x {}^{2}  + 2x - 5x - 1 = 0

2x(5x + 1) - 1(5x + 1) = 0

(2x - 1)(5x + 1) = 0

x =  \frac{1}{2}  \: or \:  \frac{ - 5}{2}

2.

Hope this helps u Please make me as a brainliest

Answered by BrainlyRaaz
2

 \huge \bigstar{\underline{\red{\mathfrak Question :}}}

Solve the following quadratic equation :

  •  \tt{m^2 + 5m + 5 = 0}

 \huge \bigstar{\underline{\green{\mathfrak Answer:}}}

  •   \tt m = \dfrac{( - 5 \pm \sqrt 5 )}{2}

 \large \bf{\underline{\underline{\mathfrak {Step\: by\: step \:explanation:}}}}

\implies \tt{m^2 + 5m + 5 = 0}

 \implies\tt m^2 + 5m = -5

 \implies\tt m^2 + 2 \times m \times \dfrac{5}{2} = - 5

 \implies\tt m^2 + 2 \times m \times \dfrac{5}{2} + \left(\dfrac{5}{2} \right)^2 = \left(\dfrac{5}{2}\right)^2 - 5

 \implies\tt \left( m + \dfrac{5}{2}\right)^2 = \dfrac{25}{4} - 5

\implies \tt \left( m + \dfrac{5}{2}\right)^2 = \dfrac{( 25 - 20 )}{4}

\implies \tt \left( m + \dfrac{5}{2}\right) = \pm {\sqrt{\left(\dfrac{5}{4}\right)}}

\implies \tt m +\dfrac{5}{2} = \pm{\sqrt{\dfrac{5}{2}}}

\implies \tt m = \dfrac{-5}{2} \pm{\sqrt{\dfrac{5}{2}}}

 \implies \tt m = \dfrac{( - 5 \pm \sqrt 5 )}{2}

Similar questions