Physics, asked by variableguy0013, 4 months ago

Starting from rest a particle moves upon a circular path of radius R such that the magnitude of tangential acceleration is inversely proportional to speed (v) then​

Attachments:

Answers

Answered by nirman95
2

Given:

Starting from rest a particle moves upon a circular path of radius R such that the magnitude of tangential acceleration is inversely proportional to speed (v).

To find:

Relation between velocity, distance and normal acceleration ?

Calculation:

As per the question :

 \therefore \: a_{t} \propto \dfrac{1}{v}

 \implies\: a_{t}  = \dfrac{k}{v}  \: . \: . \: . \: .(k \: is \: a \: constant)

 \implies\:  \dfrac{dv}{dt}  = \dfrac{k}{v}

 \implies\:  v \: dv = k \: dt

  \displaystyle\implies\:   \int_{0}^{v} v \: dv = k \: \int_{0}^{t} dt

 \implies \:  \dfrac{ {v}^{2} }{2}  = kt

 \implies \:  {v}^{2}  =2 kt

 \implies \:  v = \sqrt{2 kt}

 \implies \:  v = c \sqrt{t}  \: . \: . \: . \: .(c =  \sqrt{2k} )

 \implies \:   \dfrac{ds}{dt} = c \sqrt{t}  \: . \: . \: . \: .(c =  \sqrt{2k} )

 \implies \:  ds= c \sqrt{t}  \: dt

 \displaystyle \implies \:   \int_{0}^{x} ds= c  \int_{0}^{t}\sqrt{t}  \: dt

 \implies \: s =  \dfrac{2c}{3}   \times {t}^{ \frac{3}{2} }

 \implies \: s  \propto {t}^{ \frac{3}{2} }

  \implies \: t \propto \:  {s}^{ \frac{2}{3} }

  \implies \:  {v}^{2} \propto \:  {s}^{ \frac{2}{3} }

 \boxed{  \implies \:  v \propto \:  {s}^{ \frac{1}{3} } }

___________________________________

 \therefore \:  a_{N} =  \dfrac{ {v}^{2}}{R}

  \implies \:  a_{N}  \propto  {v}^{2}

  \implies \:  a_{N}  \propto  {( \sqrt{t} )}^{2}

\boxed{\implies \:  a_{N}  \propto  t}

So, option 4 is correct.

Similar questions