Science, asked by anandtanmayunity1, 2 months ago

starting from rest velocity is 5 m/s in 20 sec after some time the velocity decreases to 3 m/s in next 6 s calculate the acceleration in both the cases​

Answers

Answered by MystícPhoeníx
50

Answer:-

In first case

  • Initial velocity ,u = 0m/s
  • Final velocity ,v = 5m/s
  • Time taken ,t = 20s

As we know that acceleration is defined as the rate of change in velocity.

  • a = v-u/t

where,

  • v is the final velocity
  • a is the acceleration
  • u is the initial velocity
  • t is the time taken

Substitute the value we get

:\implies a = 5-0/20

:\implies a = 5/20

:\implies a = 1/4

:\implies a = 0.25m/s²

Hence, the acceleration in 1st case is 0.25m/

__________________________

Now, calculating the acceleration in the 2nd case

  • Initial velocity ,u =5m/s
  • Final velocity ,v = 3m/s
  • Time taken ,t = 6

:\implies a = v-u/t

:\implies a = 3-5/6

:\implies a = -2/6

:\implies a = -1/3

:\implies a = -0.33 m/

Here, negative sign show retardation

  • Hence, the acceleration in 2nd case is 0.33m/

________________________________

Answered by BrainlyRish
57

Given that , Starting from rest velocity is 5 m/s in 20 sec after some time the velocity decreases to 3 m/s in next 6 s.

Exigency To Find : The Acceleration in both cases ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\dag\:\:\pmb{ As,\:We\:know\:that\::}\\\\ \qquad \bigstar \:\: \bf Acceleration \: : \: \sf The \: rate \:of \: of \: change \:of\: velocity\:is \:known \: as \: Acceleration \:. \:\\\\ \qquad\maltese\:\:\bf Formula \:for \: Acceleration\:: \\\\

\qquad \dag\:\:\bigg\lgroup \pmb{\frak{ Acceleration \:(\: a\:)\:: \dfrac { v - u}{t} }}\bigg\rgroup \\\\

⠀⠀⠀Here , v is the final velocity , u is the Initial velocity , t is the total time taken and a is the Acceleration.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding Acceleration in first case ,

⠀⠀⠀For First case given that ,

  • The Initial velocity ( u ) is 0 m/s [ as , it starts from rests ] .
  • The Final Velocity ( v ) is 5 m/s .
  • The Total Time taken ( t ) is 20 seconds .

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:v - u \;}{t}\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:v - u \;}{t}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:5 - 0 \;}{20}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:5 \;}{20}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: 0.25 \:\\\\

\qquad \therefore \:\:\pmb{\underline{\purple{\frak{  Acceleration \:(\:or\:a\:)\:=\: 0.25\:\:m/s^2 }}} }\:\:\bigstar \\

  • Acceleration in first case is 0.25 m/s²

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding Acceleration in Second case ,

⠀⠀⠀For Second case given that ,

  • The Initial velocity ( u ) is 5 m/s [ as , it starts from rests ] .
  • The Final Velocity ( v ) is 3 m/s .
  • The Total Time taken ( t ) is 6 seconds .

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:v - u \;}{t}\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:v - u \;}{t}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:3 - 5 \;}{6}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \dfrac{\:-2 \;}{6}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: \cancel {\dfrac{\:-2 \;}{6}}\\\\

\qquad \dashrightarrow \sf  Acceleration \:(\:or\:a\:)\:=\: -0.33\\\\

\qquad \therefore \:\:\pmb{\underline{\purple{\frak{  Acceleration \:(\:or\:a\:)\:=\: -0.33\:\:m/s^2 }}} }\:\:\bigstar \\

  • Acceleration in Second case is -0.33 m/s²

\qquad \therefore \:\:\underline {\sf \:Hence, \:Acceleration \:in \:First \:and \: Second \:case \: are \: \bf 0.25 \: ms^2 \: and \: -0.33 \:m/s^2 \:\:\sf , respectively\:.}\\\\

Similar questions