state and explain the RHS property in congruence of triangles
Answers
RHS Congruence Rule
Theorem: In two right-angled triangles, if the length of the hypotenuse and one side of one triangle, is equal to the length of the hypotenuse and corresponding side of the other triangle, then the two triangles are congruent.
Hope it helps you. Please mark my answer as Brainliest Answer
Answer:
RHS Congruence Rule
Theorem: In two right-angled triangles, if the length of the hypotenuse and one side of one triangle, is equal to the length of the hypotenuse and corresponding side of the other triangle, then the two triangles are congruent.
Explanation:
Solved Example
Question: In the following figure, AB = BC and AD = CD. Show that BD bisects AC at right angles.
Congruence Of Triangles
Solution: We are required to prove ∠BEA = ∠BEC = 90° and AE = EC.
Consider ∆ABD and ∆CBD,
AB = BC (Given)
AD = CD (Given)
BD = BD (Common)
Therefore, ∆ABD ≅ ∆CBD (By SSS congruency)
∠ABD = ∠CBD (By CPCT)
Now, consider ∆ABE and ∆CBE,
AB = BC (Given)
∠ABD = ∠CBD (Proved above)
BE = BE (Common)
Therefore, ∆ABE≅ ∆CBE (By SAS congruency)
∠BEA = ∠BEC (CPCTC)
And ∠BEA +∠BEC = 180° (Linear pair)
2∠BEA = 180° (∠BEA = ∠BEC)
∠BEA = 180°/2 = 90° = ∠BEC
AE = EC (CPCTC)
Hence, BD is a perpendicular bisector of AC.