State and explain what happens to the velocity during the orbit of the space station?
Answers
Answered by
2
Answer:
Orbital velocity is the velocity needed to achieve balance between gravity's pull on the satellite and the inertia of the satellite's motion -- the satellite's tendency to keep going. This is approximately 17,000 mph (27,359 kph) at an altitude of 150 miles (242 kilometers).
Earth is surrounded by various satellites hovering miles above our heads. Our own moon also remains above the planet at all hours. But why don’t these objects come crashing down onto the planet’s surface? After all, other items in the sky, like an airplane or a hot air balloon, will eventually crash down if they run out of power. The reason that man-made satellites and the moon do not come crashing down is because they have achieved orbital velocity.
What Is Orbital Velocity?
Orbital velocity is the speed required to achieve orbit around a celestial body, such as a planet or a star. This requires traveling at a sustained speed that:
Aligns with the celestial body’s rotational velocity
Is fast enough to counteract the force of gravity pulling the orbiting object toward the body’s surface
An airplane can travel in the sky but it does not travel at a velocity fast enough to sustain orbit around the earth. This means that once the airplane’s engines are turned off, the plane will slow down and be pulled back down to earth, via the force of gravity. By contrast, a satellite (such as the one that powers your phone’s GPS or the one that transmits a DirecTV signal) does not need to expend fuel to maintain its orbit around the earth. This is because such satellites travel at a velocity that overrides the force of gravity.
Take note, however, that orbital velocities vary depending on the rotating object’s distance from the celestial body that it orbits. As a general rule, objects can enter orbit at lower velocities when they are farther away from the surface of a planet or star. When they are closer to the surface, it takes greater velocity to counteract the force of gravity. As such, another reason that an airplane does not achieve orbit is that it flies much closer to the earth’s surface than a communications satellite does.
I hope this was helpful to you and Mark me as Brainlist
Similar questions