Math, asked by Anonymous, 1 year ago

state and prove :-

1.Basic proportionality.....

2. Converse Basic proportionality....

3.Phythagoras theorem....

4.Converse Pythagoras theorem.....

(with the help of diagrams)


Anonymous: no
Anonymous: no it is for 50 points
thesohan: Hey plzz give more questions of such points
Anonymous: first answer this man

Answers

Answered by Anonymous
12
Basic proportionality Theorem

Given 
In ∆ABC , DE || BC and intersects AB in D and AC in E. 

To Prove : AD/DB = AE/EC

Proof : 1) EF ┴ BA

3)Area(∆ADE) = (AD .EF)/2

4)Area(∆DBE) =(DB.EF)/2

5)(Area(∆ADE))/(Area(∆DBE)) = AD/DB

6) (Area(∆ADE))/(Area(∆DEC)) = AE/EC

7) ∆DBE ~∆DEC

8) Area(∆DBE)=area(∆DEC)

9) AD/DB =AE/EC

Hence Proved..

Converse of BPT Theorem..

Given
  In ΔABC, D and E are the two points of AB and AC respectively,
  such that  .

To Prove
  DE || BC

Proof

1) DF || BC

2) AD / DB = AF / FC

3) AD / DB = AE /EC

4) AF / FC = AE / EC

5) (AF/FC) + 1 = (AE/EC) + 1

6) (AF + FC )/FC = (AE + EC)/EC

7) AC /FC = AC / EC

8) FC = EC

  Hence Proved...

Pythagoras Theorem..

Given A right ΔABC right angled at B

To proveAC2 = AB2 + BC2

 

Construction : Draw AD ⊥ AC

Proof : ΔABD and ΔABC

∠ADB = ∠ABC = 90°

∠BAD = ∠BAC  (common)

∴ ΔADB ∼ ΔABC  (by AA similarly criterion)

 AD/AB=AB/AC

⇒ AD × AC = AB²    ...... (1)

Now In ΔBDC and ΔABC

∠BDC = ∠ABC = 90°

∠BCD = ∠BCA  (common)

∴ ΔBDC ∼ ΔABC  (by AA similarly criterion)

CD/BC = BC/AC

⇒ CD × AC = BC²    ........ (2)

Adding (1) and (2) we get

AB2 + BC2 = AD × AC + CD × AC

= AC (AD + CD)

= AC × AC = AC²

∴ AC² = AB² + BC²

 Hence Proved....


Converse of Pythagoras Theorem 

GIVEN:− ABC is a △ in which AC² = AB² + BC²

To Prove:−   ∠B = 90°

Construction−   Draw a △ PQR right angled at Q, such that                             QR = BC and PQ = AB

Proof:-In △ ABC,AC2 = AB2 + BC2   given  ..........1

Now, PQ = AB  By construction

QR = BC

∴ From 1, AC² = PQ² + QR²  ..........2

Now, from △ PQR,

PR² = PQ² + QR²  Pythagoras theorem

∴ from 2, we get,     AC² = PR²

⇒ AC = PR

Now, In △ ABC and △ PQR,

AB = PQ  By construction

BC = QR  By construction

AC = PR  Proved above

⇒ ABC ≅ △ PQR  by SSS

⇒ ∠ B = ∠ Q  by CPCT

⇒ ∠ B = 90°

Hence Proved..


I proved All Hope This Help:
I reffered Google for Images
Attachments:
Answered by thesohan
0
I am the best much better than Rajesh the 6.21.3.11.5.18
Attachments:
Similar questions