State and prove Angle sum property of a Quadrilateral.
Answers
Answer:Angle Sum property of a quadrilateral says that sum of all angles of a quadrilateral is equal to 360 degree
Consider a quadrilateral PQRS.
Join QS.
To prove: ∠P + ∠Q + ∠R + ∠S = 360º
Proof:
Consider triangle PQS, we have,
⇒ ∠P + ∠PQS + ∠PSQ = 180º ... (1) [Using Angle sum property of Triangle]
Similarly, in triangle QRS, we have,
⇒ ∠SQR + ∠R + ∠QSR = 180º ... (2) [Using Angle sum property of Triangle]
On adding (1) and (2), we get
∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º
⇒ ∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ = 360º
⇒ ∠P + ∠Q + ∠R + ∠S = 360º [Hence proved]
Step-by-step explanation:
According to the angle sum property of a Quadrilateral, the sum of all the four interior angles is 360 degrees. Proof: In the quadrilateral ABCD, ∠ABC, ∠BCD, ∠CDA, and ∠DAB are the internal angles.