Math, asked by dassahelijenny, 8 months ago

State and prove Angle sum property of a Quadrilateral.

Answers

Answered by kinjalpal03
4

Answer:Angle Sum property of a quadrilateral says that sum of all angles of a quadrilateral is equal to 360 degree

Consider a quadrilateral PQRS.

Join QS.

To prove: ∠P + ∠Q + ∠R + ∠S = 360º

Proof:

Consider triangle PQS, we have,

⇒ ∠P + ∠PQS + ∠PSQ = 180º ... (1)  [Using Angle sum property of Triangle]

Similarly, in triangle QRS, we have,

⇒ ∠SQR + ∠R + ∠QSR = 180º ... (2)  [Using Angle sum property of Triangle]

On adding (1) and (2), we get

∠P + ∠PQS + ∠PSQ + ∠SQR + ∠R + ∠QSR = 180º + 180º

⇒ ∠P + ∠PQS + ∠SQR + ∠R + ∠QSR + ∠PSQ  = 360º

⇒ ∠P + ∠Q + ∠R + ∠S  = 360º  [Hence proved]

Attachments:
Answered by khushi2012anchal
4

Step-by-step explanation:

According to the angle sum property of a Quadrilateral, the sum of all the four interior angles is 360 degrees. Proof: In the quadrilateral ABCD, ∠ABC, ∠BCD, ∠CDA, and ∠DAB are the internal angles.

Similar questions