State and prove bionomial theorm
Answers
For any positive integer n,
(x+y)n=nk=0n k xn−kyk
Proof by Induction:
For n=1,
(x+y)1=x+y=1 0 x1−0y0+1 1 x1−1y1=1k=01 k x1−kyk
Suppose (x+y)n−1=n−1k=0n−1 k x(n−1)−kyk
Consider (x+y)n.
(x+y)n = = = = = = = = (x+y)(x+y)n−1 (x+y)n−1k=0n−1 k x(n−1)−kyk n−1k=0n−1 k xn−kyk+n−1j=0n−1 j x(n−1)−jyj+1 n−1k=0n−1 k xn−kyk+n−1j=0n−1 (j+1)−1 xn−(j+1)yj+1 n−1k=0n−1 k xn−kyk+nk=1n−1 k−1 xn−kyk nk=0n−1 k xn−kyk−n−1 n x0yn +nk=0n−1 k−1 xn−kyk−n−1 −1 xny0 nk=0n−1 k +n−1 k−1 xn−kyk nk=0n k xn−kyk
For any positive integer n,
(x+y)n=nk=0n k xn−kyk
Proof by Induction:
For n=1,
(x+y)1=x+y=1 0 x1−0y0+1 1 x1−1y1=1k=01 k x1−kyk
Suppose (x+y)n−1=n−1k=0n−1 k x(n−1)−kyk
Consider (x+y)n.
(x+y)n = = = = = = = = (x+y)(x+y)n−1 (x+y)n−1k=0n−1 k x(n−1)−kyk n−1k=0n−1 k xn−kyk+n−1j=0n−1 j x(n−1)−jyj+1 n−1k=0n−1 k xn−kyk+n−1j=0n−1 (j+1)−1 xn−(j+1)yj+1 n−1k=0n−1 k xn−kyk+nk=1n−1 k−1 xn−kyk nk=0n−1 k xn−kyk−n−1 n x0yn +nk=0n−1 k−1 xn−kyk−n−1 −1 xny0 nk=0n−1 k +n−1 k−1 xn−kyk nk=0n k xn−kyk