Math, asked by rameshankitha, 6 months ago

State and prove converse of basic proportionality therom

Answers

Answered by shreya292290
1

Answer:

According to this theorem, if a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side. Assume DE is not parallel to BC. Now, draw a line DE' parallel to BC.

Answered by srilakshmipasupuleti
1

Let us now try to prove the basic proportionality theorem statement

Consider a triangle ΔABC, as shown in the given figure. In this triangle, we draw a line PQ parallel to the side BC of ΔABC and intersecting the sides AB and AC in P and Q, respectively.

Basic Proportionality Theorem

According to the basic proportionality theorem as stated above, we need to prove:

AP/PB = AQ/QC

Construction

Join the vertex B of ΔABC to Q and the vertex C to P to form the lines BQ and CP and then drop a perpendicular QN to the side AB and also draw PM⊥AC as shown in the given figure.

Basic Proportionality Theorem Proof

Proof

Now the area of ∆APQ = 1/2 × AP × QN (Since, area of a triangle= 1/2× Base × Height)

Similarly, area of ∆PBQ= 1/2 × PB × QN

area of ∆APQ = 1/2 × AQ × PM

Also,area of ∆QCP = 1/2 × QC × PM ………… (1)

Now, if we find the ratio of the area of triangles ∆APQand ∆PBQ, we have

area of ΔAPQarea of ΔPBQ = 12 × AP × QN12 × PB × QN = APPB

Similarly, area of ΔAPQarea of ΔQCP = 12 × AQ × PM12 × QC × PM = AQQC ………..(2)

According to the property of triangles, the triangles drawn between the same parallel lines and on the same base have equal areas.

Therefore, we can say that ∆PBQ and QCP have the same area.

area of ∆PBQ = area of ∆QCP …………..(3)

Therefore, from the equations (1), (2) and (3) we can say that,

AP/PB = AQ/QC

Also, ∆ABC and ∆APQ fulfil the conditions for similar triangles, as stated above. Thus, we can say that ∆ABC ~∆APQ.

The MidPoint theorem is a special case of the basic proportionality theorem.

According to mid-point theorem, a line drawn joining the midpoints of the two sides of a triangle is parallel to the third side.

Consider an ∆ABC.

Mid-point Theorem

Conclusion

We arrive at the following conclusions from the above theorem:

If P and Q are the mid-points of AB and AC, then PQ || BC. We can state this mathematically as follows:

If P and Q are points on AB and AC such that AP = PB = 1/2 (AB) and AQ = QC = 1/2 (AC), then PQ || BC.

Also, the converse of mid-point theorem is also true which states that the line drawn through the mid-point of a side of a triangle which is parallel to another side, bisects the third side of the triangle.

Hence, the basic proportionality theorem is proved.

explaination:

you mark me as brainliest and be as my follower

Similar questions