Math, asked by khushi15686, 16 days ago

State and prove Euler's Theorem of partial differentiation for two variables​

Answers

Answered by Jhoperocks
3

Answer:

Hope it helps you

Step-by-step explanation:

Refer to the attachment.

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Statement :- If u is a homogeneous function in x and y of degree n then  \rm \: x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} = nu

Proof :-

As u is a homogeneous function in x and y. So, let assume that

\rm \: u =  {x}^{n} f\bigg(\dfrac{y}{x} \bigg)  \\

On differentiating partially w. r. t. x, we get

\rm \: \dfrac{\partial u}{\partial x} =  {x}^{n} \dfrac{\partial }{\partial x}f\bigg(\dfrac{y}{x} \bigg) + f\bigg(\dfrac{y}{x} \bigg)\dfrac{\partial }{\partial x} {x}^{n}\\

\rm \: \dfrac{\partial u}{\partial x} =  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg) \dfrac{\partial }{\partial x}\bigg(\dfrac{y}{x} \bigg) + f\bigg(\dfrac{y}{x} \bigg) \times  {nx}^{n - 1}\\

\rm \: \dfrac{\partial u}{\partial x} =  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg)  \bigg(\dfrac{ - y}{ {x}^{2} } \bigg) +  {nx}^{n - 1} f\bigg(\dfrac{y}{x} \bigg)  \\

On multiply both sides by x, we get

\rm \: x\dfrac{\partial u}{\partial x} =  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg)  \bigg(\dfrac{ - y}{ {x}} \bigg) +  {nx}^{n} f\bigg(\dfrac{y}{x} \bigg)  \\

\rm\implies \:\rm \: x\dfrac{\partial u}{\partial x} = \:   -  \:  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg)  \bigg(\dfrac{y}{ {x}} \bigg) +  nu  -  - -  (1)\\

Now, Consider again

\rm \: u =  {x}^{n} f\bigg(\dfrac{y}{x} \bigg)  \\

On differentiating partially w. r. t. y, we get

\rm \: \dfrac{\partial u}{\partial y} =  {x}^{n}\dfrac{\partial }{\partial y} f\bigg(\dfrac{y}{x} \bigg)  \\

\rm \: \dfrac{\partial u}{\partial y} =  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg)\dfrac{\partial }{\partial y} \bigg(\dfrac{y}{x} \bigg)  \\

\rm \: \dfrac{\partial u}{\partial y} =  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg) \bigg(\dfrac{1}{x} \bigg)  \\

On multiply both sides by y, we get

\rm\implies \:\rm \: y\dfrac{\partial u}{\partial y} =  {x}^{n}f'\bigg(\dfrac{y}{x} \bigg) \bigg(\dfrac{y}{x} \bigg)   -  -  - (2)\\

So, on adding equation (1) and (2), we get

\rm \: x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} =   - {x}^{n}f'\bigg(\dfrac{y}{x} \bigg) \bigg(\dfrac{y}{x} \bigg) + nu + {x}^{n}f'\bigg(\dfrac{y}{x} \bigg) \bigg(\dfrac{y}{x} \bigg)\\

\rm\implies \:\boxed{ \bf{ \:x\dfrac{\partial u}{\partial x} + y\dfrac{\partial u}{\partial y} = nu \: }} \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{d}{dx}(u.v) = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }}  \\

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx} \frac{1}{ {x}^{n} } =  \frac{ - n}{ {x}^{n + 1} }  \: }} \\

Similar questions