state and prove factor theorem
Answers
Answered by
8
Seee the ans broooooooo
Attachments:
Answered by
14
FACTOR THEORAM
Let f (x) be a polynomial. If a polynomial f (x) is divided by x = c, then the remainder will be zero. That is, x = c is zero or root of a polynomial f (x) , which also makes (x – c) is a factor of f (x). Thus, the theorem states that if f (c)=0, then (x–c) is a factor of the polynomial f (x). The converse of this theorem is also true. That is, if (x – c) is a factor of the polynomial f (x), then f(c)=0.
PROOF OF FACTOR THEORAM
Consider a polynomial f (x) which is divided by (x – c) .
Then, f (c) = 0.
Thus, by the Remainder theorem,
Thus, (x – c) is a factor of the polynomial f (x).
Proof of the converse part:
By the Remainder theorem,
f (x) = (x – c) q(x) + f (c)
If (x – c) is a factor of f (x), then the remainder must be zero.
That is, (x – c) exactly divides f (x).
Thus, f (c) = 0.
Hence proved.
Hope it helps so you please please please mark it as brainliest.
Thank you -
Let f (x) be a polynomial. If a polynomial f (x) is divided by x = c, then the remainder will be zero. That is, x = c is zero or root of a polynomial f (x) , which also makes (x – c) is a factor of f (x). Thus, the theorem states that if f (c)=0, then (x–c) is a factor of the polynomial f (x). The converse of this theorem is also true. That is, if (x – c) is a factor of the polynomial f (x), then f(c)=0.
PROOF OF FACTOR THEORAM
Consider a polynomial f (x) which is divided by (x – c) .
Then, f (c) = 0.
Thus, by the Remainder theorem,
Thus, (x – c) is a factor of the polynomial f (x).
Proof of the converse part:
By the Remainder theorem,
f (x) = (x – c) q(x) + f (c)
If (x – c) is a factor of f (x), then the remainder must be zero.
That is, (x – c) exactly divides f (x).
Thus, f (c) = 0.
Hence proved.
Hope it helps so you please please please mark it as brainliest.
Thank you -
PriyankaTiwari4:
please mark brainliest
Similar questions