Math, asked by upasnakhanna123, 1 year ago

State and prove mid point theorem

Answers

Answered by FammyMirza
0

Answer:

The Midpoint Theorem states that the segment joining two sides of a triangle at the midpoints of those sides is parallel to the third side and is half the length of the third side.

if it's helpful mark me as brilliant.

Answered by Anonymous
0

Answer:

Step-by-step explanation:

Proof:

∠QAP = ∠QCR. (Pair of alternate angles) ---------- (1)

AQ = QC. (∵ Q is the mid-point of side AC) ---------- (2)

∠AQP = ∠CQR (Vertically opposite angles) ---------- (3)

Thus, ΔAPQ ≅ ΔCRQ (ASA Congruence rule)

PQ = QR. (by CPCT). or PQ = 1/ 2 PR ---------- (4)

⇒ AP = CR (by CPCT) ........(5)

But, AP = BP. (∵ P is the mid-point of the side AB)

⇒ BP = CR

Also. BP || CR. (by construction)

In quadrilateral BCRP, BP = CR and BP || CR

Therefore, quadrilateral BCRP is a parallelogram.

BC || PR or, BC || PQ

Also, PR = BC (∵ BCRP is a parallelogram)

⇒ 1 /2 PR = 1/ 2 BC

⇒ PQ = 1/ 2 BC. [from (4)]

Similar questions