state and prove midpoint theorem by asa rule
Answers
Answered by
0
Answer:
mark the brainliest answer
Construction- Extend the line segment DE and produce it to F such that, EF=DE.
In the triangle, ADE, and also the triangle CFE
EC= AE —– (given)
∠CEF = ∠AED {vertically opposite angles}
EF = DE { by construction}
hence,
△ CFE ≅ △ ADE {by SAS}
Therefore,
∠CFE = ∠ADE {by c.p.c.t.}
∠FCE= ∠DAE {by c.p.c.t.}
and CF = AD {by c.p.c.t.}
The angles, ∠CFE and ∠ADE are the alternate interior angles. Assume CF and AB as two lines which are intersected by the transversal DF.
In a similar way, ∠FCE and ∠DAE are the alternate interior angles. Assume CF and AB are the two lines which are intersected by the transversal AC.
Therefore, CF∥AB
So, CF∥BD
and CF = BD {since BD = AD, it is proved that CF = AD}
Similar questions